Изменения
→Удаляющий обход
Если обход в глубину достигает стока, насыщается как минимум одно ребро, иначе как минимум один указатель продвигается вперед. Значит один запуск обхода в глубину работает за <tex>O(V + K)</tex>, где <tex>V</tex> — число вершин в графе, а <tex>K</tex> — число продвижения указателей. Ввиду того, что всего запусков обхода в глубину в рамках поиска одного [[Блокирующий поток|блокирующего потока]] будет <tex>O(P)</tex>, где <tex>P</tex> — число рёбер, насыщенных этим блокирующим потоком, то весь алгоритм поиска блокирующего потока отработает за <tex>O(PV + \sum\limits_i{K_i})</tex>, что, учитывая, что все указатели в сумме прошли расстояние <tex>O(E)</tex>, дает асимптотику <tex>O(PV + E)</tex>. В худшем случае, когда блокирующий поток насыщает все ребра, асимптотика получается <tex>O(VE)</tex>.
<b>Замечание</b> Если в [[Схема алгоритма Диница|алгоритме Диница]] искать блокирующий поток удаляющим обходом, то его эффективность составит <tex>O(V^2E)</tex>, что уже лучше эффективности [[Алоритм Эдмондса-Карпа|алгоритма Эдмондса-Карпа ]] <tex>O(VE^2)</tex>.
==Алгоритм узкого места==