93
правки
Изменения
→Динамическое программирование по подмножествам (по маскам)
*Для остальных состояний (<tex>i \ne 0</tex> или <tex>mask \ne 0</tex>) перебираем все возможные переходы в <tex>i</tex>-ую вершину из любой посещенной ранее и выбираем минимальный результат.
*Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как <tex>\infty</tex>).
Стоимостью минимального гамильтонова цикла в исходном графе будет значение <tex> d[0][2^n-1]</tex> - стоимость пути из <tex>0</tex>-й вершины в <tex>0</tex>-ю, при необходимости посетить все вершины. Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени.