Изменения

Перейти к: навигация, поиск

Цепные дроби как приближение к числу

20 байт убрано, 11:10, 21 июня 2010
Нет описания правки
Цепные дроби позволяют находить рациональные приближения вещественных чисел. Если действительное иррациональное число <math>\alpha</math> разложить в цепную дробь, то точность n-ой подходящей дроби будет соответствовать следующему неравенству:
<math>~|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i * Q_{i+1}} < \frac{1}{Q_i^2}</math>
==Теорема 1==
==Теорема 1==
Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{2Q^2}</math>
Но поскольку <math>\alpha</math> лежит между <math>\frac{P_k}{Q_k}</math> и <math>\frac{P_{k+1}}{Q_{k+1}}</math>, то <math>~|\alpha-\frac{P_k}{Q_k}|+~|\alpha-\frac{P_{k+1}}{Q_{k+1}}| = ~|\frac{P_k}{Q_k}-\frac{P_{k+1}}{Q_{k+1}}| = \frac{1}{Q_k Q_{k+1}}</math>, вследствие чего <math>\frac{1}{2Q_k^2}+\frac{1}{2Q_{k+1}^2}\leqslant\frac{1}{Q_k Q_{k+1}}</math>. Следовательно <math>(\frac{1}{Q_k}-\frac{1}{Q_{k+1}})^2 \leqslant 0</math>, что невозможно. Мы пришли к противоречию. Поэтому по крайней мере для одной из двух подходящих дробей выполнено условие теоремы. Придавая различные значения k, получим бесконечное множество дробей, удовлетворяющих условию теоремы. q.e.d.
==Теорема 32==
Для любого иррационального числа <math>\alpha</math> существует бесконечное число дробей <math>\frac{P}{Q}</math> таких, что <math>~|\alpha-\frac{P}{Q}|<\frac{1}{\sqrt{5}Q^2}</math>
===Доказательство===
Анонимный участник

Навигация