1632
правки
Изменения
м
rollbackEdits.php mass rollback
== Определение ==
{{Определение
|definition=
<tex>\langle a_0, a_1, a_2, a_3,\cdots \rangle = a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{a_3+\ldots}}}\;</tex><br />
где <tex>a_0</tex> есть целое число и все остальные <tex>a_n</tex> натуральные числа.
Различают '''конечные и бесконечные ''' цепные дроби. Любая конечная дробь <tex>\langle a_0, a_1, a_2, a_3,\ldots, a_n \rangle</tex> представима в виде некоторой рациональной дроби <tex>\frac{P_n}{Q_n}</tex>, которую называют '''n-ой подходящей дробью'''.
}}
== Цепные дроби для рациональных чисел ==
{{Main|Связь цепных дробей и алгоритма Евклида}}
Для рациональных чисел цепная дробь имеет конечный вид. Кроме того, последовательность <tex>a_i</tex> {{---}} это ровно та последовательность частных, которая получается при применении [[алгоритм Евклида|алгоритма Евклида]] к числителю и знаменателю дроби.
== Цепные дроби как приближение к числу ==
{{Main|Цепные дроби как приближение к числу|Сходимость цепных дробей}}
Подходящие дроби можно рассматривать как последовательные приближения к некоторому вещественному числу. При любых значениях <tex>a_i</tex>, удовлетворяющих требованиям определения цепной дроби, последовательность подходящих дробей имеет предел. Кроме того, скорость сходимости можно оценить как <tex>|\alpha-\frac{P_i}{Q_i}| < \frac{1}{Q_i^2}</tex>.
== Периодичность цепных дробей ==
{{Main|Периодичность цепных дробей}}
Цепная дробь [[квадратичная иррациональность|квадратичной иррациональности]] {{---}} периодична, а цепная дробь приведенной квадратичной иррациональности {{---}} чисто периодична.
== Примеры разложения чисел в цепные дроби ==
* <tex> \frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}=\langle 1, 2, 2 \rangle</tex>
* <tex> \sqrt{2} = 1+\frac{1}{\sqrt{2}+1}=1+\frac{1}{2+\frac{1}{\sqrt{2}+1}}=\langle 1, 2, 2, \cdots \rangle</tex>
== Свойства цепных дробей ==
{{Main|Свойства цепных дробей}}
Цепную дробь <tex>\langle a_0, a_1, a_2,\cdots, a_n \rangle</tex> можно записать в виде частного двух полиномов
<tex> \frac{[a_0, a_1, a_2,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]}</tex>, где <tex>[a_0, a_1, a_2,\cdots, a_n]</tex> {{---}} некоторый полином от <tex>n+1</tex> переменной.
Эти полиномы удовлетворяют следующим свойствам:
* <tex>[a_0,\cdots, a_n]</tex> {{---}} полином от <tex>n+1</tex> переменной, состоящий из <tex>F_{n+1}</tex> мономов.
* <tex>[a_0, a_1, a_2,\cdots, a_n] = a_0[a_1, a_2, a_3,\cdots, a_n] + [a_2, a_3, a_4,\cdots, a_n]</tex>.
* <tex>[a_0, a_1, a_2,\cdots, a_n] = [a_0, a_1,\cdots, a_{n - 1}]a_n + [a_0, a_1,\cdots, a_{n-2}]</tex>.
* <tex>[a_0, a_1, \cdots, a_n] = [a_n, a_{n-1}, \cdots, a_0] </tex>
Для числителей и знаменателей <tex>n</tex>-ой подходящей дроби верны следующие формулы:
* <tex>P_n = P_{n-1}a_n + P_{n-2}</tex>
* <tex>Q_n = Q_{n-1}a_n + Q_{n-2}</tex>
* <tex>P_nQ_{n-1}-P_{n-1}Q_n=(-1)^{n+1}</tex>
[[Категория: Теория чисел]]