'''Слито со статьей [[Основные определения теории графов]]''' == Основные определения == {{Определение|definition ='''Ориентированный граф (directed graph) <tex> G </tex>''' - это пара <tex> G = (V, E) </tex>, где <tex>V</tex> - конечное множество вершин, а <tex>E \subset V \times V </tex> - множество рёбер. Ребро обозначается как пара вершин <tex>(v, u)</tex>, где <tex>v</tex> - начало ребра, а <tex>u</tex> - конец. Причём <tex>(v, u) \ne (u, v)</tex>.}} {{Определение|definition =Также '''ориентированным графом <tex> G </tex>''' - называется четверка <tex> G = (V, E, begin, end) </tex>, где <tex>begin, end: E \to V</tex>.}} Для ориентированного графа справедлива [[Лемма о рукопожатиях|лемма о рукопожатиях]], связывающая количество ребер с суммой #REDIRECT [[Основные определения теории графов#Степень вершины|степеней вершин]]. {{Определение|definition =Ребро ориентированного графа называется '''дугой (arc)'''.}} == Представление == === Матрица и списки смежности === Ориентированный граф можно представить в виде [[Матрица смежности графа|матрицы смежности]], где <tex>graph[v][u] = true \Leftrightarrow (v, u) \in E</tex>. Также в ячейке матрицы может хранится вес ребра или их количество (если в графе разрешены паралелльные ребра).Для матрицы смежности существует [[Связь степени матрицы смежности и количества путей|теорема]], позволяющая связать степень матрицы и количество путей из вершины <tex>v</tex> в вершину <tex>u</tex>. Если граф разрежен (<tex>|E| < |V^2|</tex>), его лучше представить в виде списков смежности, где список для вершины <tex>v</tex> будет содержать вершины <tex>u: (v, u) \in E</tex>. Данный способ позволит сэкономить память, т.к. не придется хранить много нулей. === Матрица инцидентности === Имеет место и другое представление графа - [[Матрица инцидентности графа|матрица инцидентности]], которая сопоставляет множество вершин множеству ребер. То есть:# <tex>graph[v][j] = 1 \wedge graph[u][j] = -1 \Leftrightarrow v = begin (e_j) \wedge u = end (e_j)</tex>.# В остальных случаях ячейки матрицы равны 0. == Источник ==* ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.) == См. также ==*[[Основные определения теории графов]] [[Категория: УдалитьОриентированные графы]]