'''База'''. <tex>A \underset{G'}{\Rightarrow} w</tex>.<br/>
В этом случае в <tex>G'</tex> есть правило <tex>A \rightarrow w</tex>. По построению <tex>G'</tex> в <tex>G</tex> есть правило <tex>A \rightarrow \alpha</tex>, причем <tex>\alpha</tex> — цепочка <tex>w</tex>, элементы которой, возможно, перемежаются <tex>\varepsilon</tex>-порождающими нетерминалами. Тогда в <tex>G</tex> есть порождения <tex>A \underset{G}{\Rightarrow} \alpha \underset{G}{\Rightarrow}^*w</tex>.<br/>
'''Предположениеиндукции'''. Пусть из <tex>A \underset{G'}{\Rightarrow}^*w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов, следует, что <tex>A \underset{G}{\Rightarrow}^*w</tex>.<br/>
'''Переход'''.
Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G'}{\Rightarrow}X_1 X_2...X_k \underset{G'}{\Rightarrow}^*w</tex>, где <tex>X_i \in N \cup \Sigma </tex>. Первое использованное правило должно быть построено по правилу грамматики <tex>G</tex> <tex>A \rightarrow Y_1 Y_2...Y_m</tex>, где последовательность <tex>Y_1 Y_2...Y_m</tex> совпадает с последовательностью <tex>X_1 X_2...X_k</tex>, символы которой, возможно, перемежаются <tex>\varepsilon</tex>-порождающими нетерминалами.<br/>
'''База'''. <tex>A \underset{G}{\Rightarrow} w</tex>.<br/>
Правило <tex>A \rightarrow w</tex> присутствует в <tex>G</tex>. Поскольку <tex>w \ne \varepsilon</tex>, это же правило будет и в <tex>G'</tex>, поэтому <tex>A \underset{G'}{\Rightarrow}^*w</tex>.<br/>
'''Предположениеиндукции'''. Пусть из <tex>A \underset{G}{\Rightarrow}^*w \ne \varepsilon</tex> менее, чем за <tex>n</tex> шагов, следует, что <tex>A \underset{G'}{\Rightarrow}^*w </tex>.<br/>
'''Переход'''. Пусть в порождении <tex>n</tex> шагов, <tex>n > 1</tex>. Тогда оно имеет вид <tex>A\underset{G}{\Rightarrow}Y_1 Y_2...Y_m \underset{G}{\Rightarrow}^*w</tex>, где <tex>Y_i \in N \cup \Sigma </tex>. Цепочку <tex>w</tex> можно разбить на <tex>w_1 w_2...w_m</tex>, где <tex>Y_i \underset{G}{\Rightarrow}^*w_i</tex>.<br/>
Пусть <tex>Y_{i_1}, Y_{i_2}, ..., Y_{i_p}</tex> — подпоследовательность, состоящая из всех элементов, таких, что <tex>w_{i_k} \ne \varepsilon</tex>, то есть <tex>Y_{i_1} Y_{i_2} ... Y_{i_p} \underset{G}{\Rightarrow}^*w</tex>. <tex>p \ge 1</tex>, поскольку <tex>w \ne \varepsilon</tex>. Значит, <tex>A \rightarrow Y_{i_1} Y_{i_2} ... Y_{i_p}</tex> является правилом в <tex>G'</tex> по построению <tex>G'</tex>.<br/>