Изменения
Нет описания правки
{{В разработке}}
{{Теорема
|statement=
Если между двумя [[Основные определения теории графов|вершинами неориентированного графа]] существуют два различных рёберно-простых [[Основные определения теории графов|пути]]в неориентированном графе существует цикл, то в этом графе существует простой цикл.
|proof=
Заметим, что наличие цикла в графе равносильно существованию двух реберно-простых путей между некоторыми вершинами в этом графе.
Возьмём два существующих пути между нужными нам вершинами: <tex>V_0E_1V_1E_2V_2 ... E_nV_n</tex>, <tex>v_0e_1v_1e_2v_2 ... e_mv_m</tex>, <tex>V_0 = v_0</tex>, <tex>V_n = v_m</tex>. Удалим из путей одинаковые префиксы и суффиксы, оставив из тех только последние и первые вершины, соответственно. Оставшиеся пути: <tex>V_aE_{a+1} ... E_bV_b</tex>, <tex>v_ae_{a+1} ... e_cv_c</tex>, <tex>V_a = v_a</tex>, <tex>V_b = v_c</tex>, <tex>E_{a+1} \neq e_{a+1}</tex>, <tex>E_b \neq e_c</tex>.