61
правка
Изменения
Нет описания правки
{{Q|width=30%|Декартово дерево правит миром. За логарифм.|Неизвестный автор}}
==Основная идея==
Возьмем структуру данных '''[[Саморасширяющийся массив|вектор]]'''. В её стандартной реализации мы умеем добавлять элемент в конец вектора, узнавать значение элемента, стоящего на определенной позиции, изменять элемент по номеру и удалять последний элемент. Предположим, что нам необходима структура данных с вышеуказанными свойствами, а также с операциями: добавить элемент в любое место (с соответствующим изменением нумерации элементов) и удалить любой элемент (также с соответствующим изменением нумерации). Такая структура существует и называется '''Декартово дерево по неявному ключу''', или же '''rope''' (''англ.'''веревка''''').
[[Файл:Tree_1.png|right|250px|thumb|Пример описанного дерева с демонстрацией определения ключа <tex>X</tex>]]
Напомним, '''[[Декартово дерево]]''' {{---}} это структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу. Для решения задачи, поставленной в предыдущей главе, При реализации же декартова дерева по неявному ключу попробуем слегка модифицировать эту структуру. Если конкретнееА именно, то оставим в нем только один ключ - ключ <tex>Y</tex>. Вместо второго ключа будем использовать следующую величину: '''количество элементов в нашей структуре, находящихся левее нашего элемента'''. Если прощеИначе говоря, то будем считать ключом порядковый номер нашего элемента в дереве, уменьшенный на единицу.
Заметим, что при этом сохранится структура [[Дерево_поиска,_наивная_реализация|двоичного дерева поиска]] по этому ключу(т.е. наше то есть модифицированное декартово дерево так и останется декартовым деревом). Однако, с этим подходом появляется проблема: наши операции добавления и удаления элемента могут поменять нумерацию, и при наивной реализации на изменение всех ключей потребуется <tex>O(n)</tex> времени, где <tex>n</tex> {{---}} количество элементов в дереве.
==Операции, поддерживающие структуру декартова дерева==
Структура обычного декартова дерева поддерживается с помощью двух операций: '''split''' {{---}} разбиение одного декартова дерева на два таких, что в одном ключ <tex>X</tex> меньше, чем заданное значение, а в другом {{---}} больше, и '''merge''' {{---}} слияние двух деревьев, в одном из которых все ключи <tex>X</tex> меньше, чем во втором. С учетом отличий декартова дерева по неявному ключу от обычного, операции теперь будут описываться так: разбиение дерева на два так, что в левом окажется ровно <tex>t</tex> вершин, и слияние двух любых деревьев, соответственно.
===Split===
==Применение описанного дерева==
* переставить любой кусок массива куда угодно (сделаем нужные разрезы и слияния в правильном порядке)
* совершать групповые операции с элементами. Вспомним реализацию таких операций в дереве отрезков и поймем, что ничего не помешает нам сделать то же самое с описанным деревом. В групповые операции включается, естественно, и взятие функции от отрезка.
* сделав на одном исходном массиве два дерева из элементов разной четности, можно решить задачу про смену мест четных и нечетных на отрезке (одно из домашних заданий)* повелевать миром.