Изменения
Нет описания правки
|proof=
Рассматриваем <tex>x,y>0</tex>, остальные корни получатся из симметрии. Так как <tex>\sqrt{d}\geqslant 1</tex>, то <tex>x>y>0</tex>.
<tex>x+\sqrt{d}y>2y</tex>. Следовательно <tex>1=x^2-dy^2=(x-\sqrt{d}y)(x+sqrt{d}y)>(x-\sqrt{d}y)2y</tex>. Разделим обе части на <tex>2y^2</tex> получим :<tex>\frac{x}{y}-\sqrt{d} < \frac{1}{2y^2}</tex>. Значит по теореме о приближении <tex>\frac{x}{y}</tex> является подходящей дробью для <tex>\sqrt{d}</tex>.
}}