355
правок
Изменения
→Неравенство Минковского
=== Неравенство Минковского ===
{{Теорема
|id=неравенство Минковского
|statement=Пусть <tex>a,b\in\mathbb{R}^n</tex> или <tex>\mathbb{C}^n,\ p\ge1</tex>. Тогда
<tex>\left(\underset{k=1}{\overset{n}{\sum}}\vert a_k+b_k\vert^p\right)^{1/p}\le\left(\underset{k=1}{\overset{n}{\sum}}\vert a_k\vert^p\right)^{1/p}+\left(\underset{k=1}{\overset{n}{\sum}}\vert b_k\vert^p\right)^{1/p}</tex>.
|proof=При <tex>p=1</tex> неравенство Минковского сводится к неравенству треугольника для модуля. Пусть <tex>p>1,\ q={p\over p-1}</tex>. Обозначим <tex>C=\underset{k=1}{\overset{n}{\sum}}\vert a_k+b_k\vert^p</tex>. Применим неравенство треугольника, а затем неравенство Гёльдера:
<tex>C=\underset{k=1}{\overset{n}{\sum}}\vert a_k+b_k\vert\vert a_k+b_k\vert^{p-1}\le\underset{k=1}{\overset{n}{\sum}}\vert a_k\vert\vert a_k+b_k\vert^{p-1}+\underset{k=1}{\overset{n}{\sum}}\vert b_k\vert a_k+b_k\vert^{p-1}\le\left(\underset{k=1}{\overset{n}{\sum}}\vert a_k\vert^p\right)^{1/p} \left(\underset{k=1}{\overset{n}{\sum}}\vert a_k+b_k\vert^{(p-1)q}\right)^{1/q}+\left(\underset{k=1}{\overset{n}{\sum}}\vert b_k\vert^p\right)^{1/p} \left(\underset{k=1}{\overset{n}{\sum}}\vert a_k+b_k\vert^{(p-1)q}\right)^{1/q}=\left\{\left(\underset{k=1}{\overset{n}{\sum}}\vert a_k\vert^p\right)^{1/p}+\left(\underset{k=1}{\overset{n}{\sum}}\vert b_k\vert^p\right)^{1/p}\right\}C^{1/q}.</tex>
Если <tex>C=0</tex>, то неравенство Минковского очевидно, а если <tex>C>0</tex>, то, сокращая на <tex>C^{1/q}</tex>, получаем требуемое.
}}
=== Неравенство Коши ===