76
правок
Изменения
Нет описания правки
{{Определение
|id=space_foo
|definition=Функция <tex>f(x)</tex> называется '''конструируемой по памяти''', если можно вычислить <tex>f(x)</tex> по <tex>x</tex>, используя памяти не более <tex>f(x)</tex>памяти.
}}
|statement=Пусть даны две конструируемые по памяти функции <tex>f</tex> и <tex>g</tex> такие, что <tex>\lim \limits_{n\rightarrow\infty} \frac{f(n)}{g(n)}=0</tex>, тогда <tex>DSPACE(g(n))\neq DSPACE(f(n))</tex>.
|proof=
Для доказательства воспользуемся диагональным методом. Рассмотрим функцию <tex>h(n)=\sqrt{f(n)g(n)}</tex> и язык <tex>L=\{x|x(x)\Bigr|_{s\leq h(|x|)}\neq 1\}</tex>, где запись <tex>s\leq h(|x|)</tex> — ограничение на памятьозначает, в случае достижения которого выполнение программы прерываетсячто программа запускается с лимитом памяти <tex>h(|x|)</tex>. Иначе говоря, <tex>L</tex> — это язык программ, которыене допускают собственный код, если на вход подать саму программу, используя памяти не возвращают 1 при условии ограничения на память более <tex>h(|x|)</tex>. Докажем, что <tex>L\in DSPACE(g(n))\setminus DSPACE(f(n))</tex>. <span title="Т. к. <tex>h(n)=o(g(n))" style="border-bottom: 1px dotted; cursor: help;">Очевидно</spantex>, то очевидно, что <tex>L \in DSPACE(g(n))</tex>. Предположим теперь, что <tex>L \in DSPACE(f(n))</tex>. Тогда существует программа <tex>p</tex>, распознающая язык <tex>L</tex> и использующая не более <tex>c \cdot f(n)</tex> памяти. Т. к. <tex>f(n)=o(h(n))</tex>, то <tex>\exists n_0: \forall n>n_0~c\cdot f(n)<h(n)</tex>. Будем считать, что <tex>|p|>n_0</tex> (иначе добавим в программу пустые строки, искусственно увеличив её длину), тогда при вызове <tex>p(p)</tex> потребуется не более <tex>h(|p|)</tex> памяти. Выясним, принадлежит ли <tex>p</tex> языку <tex>L</tex>. Допустим, что <tex>p\in L</tex>, тогда <tex>p(p)=1</tex>, значит, <tex>p\notin L</tex> по определению языка <tex>L</tex>. Пусть теперь <tex>p\notin L</tex>. Но тогда <tex>p(p)=1</tex>, следовательно, <tex>p\in L</tex>. Таким образом, язык <tex>L</tex> не может быть из <tex>DSPACE(f(n))</tex>, следовательно, язык из <tex>DSPACE(g(n))\setminus DSPACE(f(n))</tex> найден.}}
{{Определение
|about=о временной иерархии
|id=time
|statement=Пусть даны две конструируемые по времени функции <tex>f</tex> и <tex>g</tex> такие, <span title="Здесь Sim(n) — время симуляции n шагов одной машины Тьюринга на другой машине" style="border-bottom: 1px dotted; cursor: help;">что </span> <tex>\lim \limits_{n\rightarrow\infty} \frac{Sim(f(n))}{g(n)}=0</tex>, тогда <tex>DTIME(g(n))\neq DTIME(f(n))</tex>.
|proof=Доказательство аналогично доказательству [[Теоремы о временной и емкостной иерархиях#space|теоремы о емкостной иерархии]].
}}
[[Категория:Теория сложности]]