184
правки
Изменения
Нет описания правки
Доказательство ведётся индуктивно по <tex>n</tex>. При <tex>n = 3</tex> теорема тривиальна. Рассмотрим случай при <tex>n > 3</tex> и предположим, что теорема выполняется при всех <tex>m < n</tex>. Докажем существование диагонали в многоугольнике <tex>P</tex>. Возьмём самую левую вершину <tex>v</tex> многоугольника <tex>P</tex> и две смежных с ней вершины <tex>u</tex> и <tex>w</tex>. Если отрезок <tex>uw</tex> принадлежит внутренней области <tex>P</tex> — мы нашли диагональ. В противном случае, во внутренней области треугольника <tex>uwv</tex> или на самом отрезке <tex>uw</tex> содержится одна или несколько вершин <tex>P</tex>. Выберем самую наиболее далеко отстоящую от <tex>uw</tex> вершину <tex>v'</tex>. Отрезок, соединяющий <tex>v</tex> и <tex>v'</tex> не может пересекать сторон <tex>P</tex>, поскольку в противном случае одна из вершин это отрезка будет располагаться дальше от <tex>uw</tex>, чем <tex>v'</tex>. Это противоречит условию выбора <tex>v'</tex>. В итоге получаем, что <tex>v'v</tex> — диагональ.
Любая диагональ делит <tex>P</tex> на 2 многоугольника <tex>P_1</tex> и <tex>P_2</tex>
}}