322
правки
Изменения
→Теорема
# <tex>\mathrm{BPP_{strong}} \subseteq \mathrm{BPP} </tex> <br> Это следует из определений <tex>\mathrm{BPP}</tex> и <tex>\mathrm{BPP_{strong}}</tex>.
# <tex>\mathrm{BPP} \subseteq \mathrm{BPP_{strong}}</tex> <br> Пусть <tex>L \in \mathrm{BPP}</tex>. Тогда <tex>\exists p : P(p(x)=[x \in L]) \ge \frac {2}{3}</tex>. <br> Построим ВМТ <tex>p_1</tex>, которая для входа <tex>x</tex> запускает <tex>p(x)</tex> <tex>n</tex> раз, и принимает <tex>x</tex>, если больше половины запусков принимают его. <br> Подберем <tex>n</tex>, такое, что <tex>P(p_1(x)=[x \in L]) \ge 1 - \frac {1}{2^{q(|x|)}}</tex> и <tex>T(p_1(x)) \le poly(|x|)</tex>. <br> Проводя рассуждения, аналогичные изложенным в доказательстве <tex>\mathrm{BPP_{weak}} \subseteq \mathrm{BPP}</tex>, получаем, что <tex>1 - \mathrm{e}^{- 2n \left( {p - \frac{1}{2}} \right)^2} \ge 1 - \frac {1}{2^{q(|x|)}}</tex>, где <tex>p = \frac {2} {3}</tex>. Отсюда <tex>n \ge \frac {{q(|x|)} \ln 2}{2({\frac {2}{3} - \frac {1}{2}})^2} </tex>. Возьмем <tex>n = \lceil 18 {q(|x|)} \ln 2 \rceil </tex>, тогда неравенство <tex>T(p_1(x)) \le poly(|x|)</tex> будет выполнено.
}}