689
правок
Изменения
добавил оставшуюся часть параграфа
{{Определение
|definition = Систему функций <tex> 1,\ \cos x,\ ldots \sin x,\ \cos nx,\ \sin nx, \ldots (n = 1, 2 \ldots)</tex> называют '''тригонометрической системой функций'''.
}}
Каждая из этих функций ограниченная, <tex> 2\pi </tex>-периодическая, следовательно, все функции принадлежат <tex>L_p</tex>.
\int\limits_Q |f_n - f| \xrightarrow[n \to \infty]{} 0
</tex>.
{{Теорема
|statement=
Пусть тригонометрический ряд <tex> \frac {a_0}{2} + \sum\limits_{n = 1}^{+\infty} (a_n \cos nx + b_n \sin nx) </tex> сходится в <tex> L_1 </tex> и имеет суммой функцию <tex> f </tex>. Тогда для него выполняются формулы Эйлера-Фурье:
<tex> a_0 = \frac{1}{\pi} \int\limits_{Q} f,\ a_n = \frac{1}{\pi} \int\limits_{Q} f(x) \cos nx dx,\ b_n = \frac{1}{\pi} \int\limits_{Q} f(x) \sin nx dx </tex>.
|proof=
Формула для <tex> a_0 </tex> очевидна.
Пусть <tex> S_n(x) = \frac {a_0}{2} + \sum\limits_{k = 1}^{n} (a_k \cos kx + b_k \sin kx) </tex>.
По условию, <tex> \int\limits_{Q} | f(x) - f_n(x) | dx \rightarrow 0 </tex>. Зафиксируем некоторое натуральное <tex> p </tex>:
<tex> | \int\limits_{Q} (f(x) - S_n(x)) \cos px dx | \le \int\limits | f(x) - S_n(x) | dx \xrightarrow[n \rightarrow \infty]{} 0 </tex>.
Значит, <tex> \int\limits_{Q} f(x) \cos px dx - \int\limits_{Q} S_n(x) \cos px dx \rightarrow 0 </tex>.
Если <tex> n > p </tex>, то <tex> \int\limits_{Q} S_n(x) \cos px dx = \int\limits_{Q} a_p \cos^2 px dx = \pi a_p </tex>.
Значит, <tex> \frac{1}{\pi} \int\limits_{Q} f(x) \cos px dx = a_p </tex>.
Аналогично доказывается формула для <tex> b_p </tex>.
}}
{{Определение
|definition=
Пусть функция <tex> f \in L_1 </tex>. '''Ряд Фурье''' <tex> f </tex> — тригонометрический ряд, коэффициенты которого вычислены по формулам Эйлера-Фурье.
}}
Колмогоров построил пример суммируемой <tex> 2\pi </tex>-периодической функции, ряд Фурье которой расходится в каждой точке. Отсюда возникает круг проблем, которые связаны с поиском условий, гарантирующих сходимость ряда Фурье, сходящегося в каждой точке. Это тем более важно, учитывая, что существуют непрерывные <tex> L_p </tex>-функции, ряды которых расходятся в бесконечном числе точек.
Карлсон доказал, что для функций из <tex> L_2 </tex> ряд Фурье сходится почти всюду.
Если функция является <tex> 2T </tex>-периодической, то для нее соответствующей тригонометрической системой будет <tex> 1,\ \cos \frac{\pi}{T} x,\ldots \sin \frac{\pi}{T} x,\ \cos \frac{\pi}{T} nx,\ \sin \frac{\pi}{T} nx, \ldots (n = 1, 2 \ldots)</tex>.
Пусть <tex> f(x) </tex> определена и суммируема на <tex> [0; a] </tex>. Тогда, продолжая ее периодически тем или иным способом на всю ось, мы будем получать разные ряды Фурье:
# <tex> T = a </tex>, на <tex> [-a; 0] </tex> продолжаем <tex> f </tex> как четную функцию. Тогда <tex> a_n = \frac2T \int\limits_{Q} f(x) \cos \frac{\pi}{T}nx dx,\ b_n = 0 </tex>, ряд Фурье выглядит как <tex> \frac{a_0}{2} + \sum_{n = 1}^{\infty} a_n \cos \frac{\pi}{T}nx </tex>.
# <tex> T = a </tex>, на <tex> [-a; 0] </tex> продолжаем <tex> f </tex> как нечетную функцию. В этом случае <tex> a_n = 0,\ b_n = \frac2T \int\limits_{Q} f(x) \sin \frac{\pi}{T}nx dx </tex>, ряд Фурье имеет вид <tex> \sum_{n = 1}^{\infty} b_n \sin \frac{\pi}{T}nx </tex>.
# <tex> 2T = a </tex>, здесь присутствуют все члены ряда.
Итак, если <tex> f </tex> задана на <tex> [0; a] </tex>, то на этом участке ее можно представлять различными рядами Фурье.