Изменения

Перейти к: навигация, поиск

Участник:Nechaev/Черновик

387 байт добавлено, 17:21, 11 июня 2012
Нет описания правки
Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Хеш-код <tex>i = h(key)</tex> играет роль индекса в массиве <tex>H</tex>, а зная индекс, мы можем выполнить требующуюся операцию (добавление, удаление или поиск).
Количество коллизий зависит от хеш-функции; чем лучше используемая хеш-функция, тем меньше вероятность их возникновения. При вставке в хеш-таблицу размером 365 ячеек всего лишь 23-х элементов вероятность коллизии превышает 50 50% <ref><tex>p(n) = 1 - 1 \cdot \left(1-\frac{1}{len}\right) \cdot \left(1-\frac{2}{len}\right) \cdots \left(1-\frac{n-1}{len}\right) = { len \cdot len-1 \cdots (len-n+1) \over len^n } </tex> <tex> = { len! \over len^n \cdot (len-n)!},</tex><br>где <tex>n</tex> {{---}} количество элементов в хеш-таблице, а <tex>len</tex> {{---}} её размер.</ref> (при равномерном распределении значений хеш-функции)<ref>[http://ru.wikipedia.org/wiki/Парадокс_дней_рождения Парадокс дней рождения {{---}} Википедия]</ref>. Способ разрешения коллизий — важная составляющая любой хеш-таблицы.
Полностью избежать коллизий для произвольных данных невозможно в принципе, и хорошая хеш-функция в состоянии только минимизировать их количество. Но, в некоторых специальных случаях их удаётся избежать. Если все ключи элементов известны заранее, либо меняются очень редко, то можно подобрать хеш-функцию, с помощью которой, все ключи будут распределены по хеш-таблице без коллизий. Это хеш-таблицы с ''прямой адресацией''; в них все операции, такие как: поиск, вставка и удаление работают за <tex>O(1)</tex>.
277
правок

Навигация