Изменения

Перейти к: навигация, поиск

Сортировка Хана

Нет изменений в размере, 19:43, 12 июня 2012
Нет описания правки
==Уменьшение числа бит в числах==
Один из способов ускорить сортировку {{---}} уменьшить число бит в числе. Один из способов уменьшить число бит в числе {{---}} использовать деление пополам (эту идею впервые подал van Emde Boas). Деление пополам заключается в том, что количество оставшихся бит в числе уменьшается в 2 раза. Это быстрый способ, требующий <tex>O(m)</tex> памяти. Для своего дерева Андерссон использует хеширование, что позволяет сократить количество памяти до <tex>O(n)</tex>. Для того, чтобы еще ускорить алгоритм нам необходимо упаковать несколько чисел в один контейнер, чтобы затем за константное количество шагов произвести хэширование хеширование для всех чисел хранимых в контейнере. Для этого используется хэш хеш функция для хэширования хеширования <tex>n</tex> чисел в таблицу размера <tex>O(n^2)</tex> за константное время, без коллизий. Для этого используется хэш хеш модифицированная функция авторства: Dierzfelbinger и Raman.
Алгоритм: Пусть целое число <tex>b \ge 0</tex> и пусть <tex>U = \{0, \ldots, 2^b - 1\}</tex>. Класс <tex>H_{b,s}</tex> хэш хеш функций из <tex>U</tex> в <tex>\{0, \ldots, 2^s - 1\}</tex> определен как <tex>H_{b,s} = \{h_{a} \mid 0 < a < 2^b, a \equiv 1 (\mod 2)\}</tex> и для всех <tex>x</tex> из <tex>U: h_{a}(x) = (ax \mod 2^b) div 2^{b - s}</tex>.
}}
Взяв <tex>s = 2 \log n</tex> получаем хэш хеш функцию <tex>h_{a}</tex> которая захэширует захеширует <tex>n</tex> чисел из <tex>U</tex> в таблицу размера <tex>O(n^2)</tex> без коллизий. Очевидно, что <tex>h_{a}(x)</tex> может быть посчитана для любого <tex>x</tex> за константное время. Если упаковать несколько чисел в один контейнер так, что они разделены несколькими битами нулей, спокойно применяется <tex>h_{a}</tex> ко всему контейнеру, а в результате все хэш хеш значения для всех чисел в контейере были посчитаны. Заметим, что это возможно только потому, что в вычисление хэш хеш знчения вовлечены только (mod <tex>2^b</tex>) и (div <tex>2^{b - s}</tex>).
Такая хэш хеш функция может быть найдена за <tex>O(n^3)</tex>.
Следует отметить, что несмотря на размер таблицы <tex>O(n^2)</tex>, потребность в памяти не превышает <tex>O(n)</tex> потому, что хэширование хеширование используется только для уменьшения количества бит в числе.
==Signature sorting==
Предположим, что <tex>n</tex> чисел должны быть сортированы, и в каждом <tex>\log m</tex> бит. Рассматривается, что в каждом числе есть <tex>h</tex> сегментов, в каждом из которых <tex>\log (m/h)</tex> бит. Теперь применяем хэширование хеширование ко всем сегментам и получаем <tex>2h \log n</tex> бит хэшированных хешированных значений для каждого числа. После сортировки на хэшированных хешированных значениях для всех начальных чисел начальная задача по сортировке <tex>n</tex> чисел по <tex>m</tex> бит в каждом стала задачей по сортировке <tex>n</tex> чисел по <tex> \log (m/h)</tex> бит в каждом.
Для этого воспользуемся signature sorting. Адаптируем этот алгоритм для нас. Предположим у нас есть набор <tex>T</tex> из <tex>p</tex> чисел, которые уже отсортированы как <tex>a_{1}, a_{2}, \ldots, a_{p}</tex>, и хотется использовать числа в <tex>T</tex> для разделения <tex>S</tex> из <tex>q</tex> чисел <tex>b_{1}, b_{2}, \ldots, b_{q}</tex> в <tex>p + 1</tex> наборов <tex>S_{0}, S_{1}, \ldots, S_{p}</tex> что <tex>S_{0}</tex> < {<tex>a_{1}</tex>} < <tex>S_{1}</tex> < <tex>\ldots</tex> < {<tex>a_{p}</tex>} < <tex>S_{p}</tex>. Назовем это разделением <tex>q</tex> чисел <tex>p</tex> числами. Пусть <tex>h = \log n/(c \log p)</tex> для константы <tex>c > 1</tex>. <tex>h/ \log\log n \log p</tex> битные числа могут быть хранены в одном контейнере, так что одно слово хранит <tex>(\log n)/(c \log\log n)</tex> бит. Сначала рассматриваем биты в каждом <tex>a_{i}</tex> и каждом <tex>b_{i}</tex> как сегменты одинаковой длины <tex>h/ \log\log n</tex>. Рассматриваем сегменты как числа. Чтобы получить неконсервативное преимущество для сортировки, хэшируются хешируются числа в этих контейнерах (<tex>a_{i}</tex>-ом и <tex>b_{i}</tex>-ом), чтобы получить <tex>h/ \log\log n</tex> хэшированных хешированных значений в одном контейнере. Чтобы получить значения сразу, при вычислении хэш хеш значений сегменты не влияют друг на друга, можно даже отделить четные и нечетные сегменты в два контейнера. Не умаляя общности считаем, что хэш хеш значения считаются за константное время. Затем, посчитав значения, два контейнера объединяются в один. Пусть <tex>a'_{i}</tex> хэш хеш контейнер для <tex>a_{i}</tex>, аналогично <tex>b'_{i}</tex>. В сумме хэш хеш значения имеют <tex>(2 \log n)/(c \log\log n)</tex> бит. Хотя эти значения разделены на сегменты по <tex>h/ \log\log n</tex> бит в каждом контейнере. Между сегментами получаются пустоты, которые забиваются нулями. Сначала упаковываются все сегменты в <tex>(2 \log n)/(c \log\log n)</tex> бит. Потом рассматриваются каждый хэш хеш контейнер как число и сортируются эти хэш хеш контейнеры за линейное время (сортировка рассмотрена чуть позже). После этой сортировки биты в <tex>a_{i}</tex> и <tex>b_{i}</tex> разрезаны на <tex>\log\log n/h</tex>. Таким образом получилось дополнительное мультипликативное преимущество в <tex>h/ \log\log n</tex> (additional multiplicative advantage).
Хэш Хеш функция, которая используется, находится следующим образом. Будут хэшироватся хешироватся сегменты, которые <tex>\log\log n/h</tex>-ые, <tex>(\log\log n/h)^2</tex>-ые, <tex>\ldots</tex> от всего числа. Для сегментов вида <tex>(\log\log n/h)^t</tex>, получаем нарезанием всех <tex>p</tex> чисел на <tex>(\log\log n/h)^t</tex> сегментов. Рассматривая каждый сегмент как число, получится <tex>p(\log\log n/h)^t</tex> чисел. Затем получаем одну хэш хеш функцию для этих чисел. Так как <tex>t < \log n</tex> то, получится не более <tex>\log n</tex> хэш хеш функций.
Рассмотрим сортировку за линейное время о которой было упомянуто ранее. Предполагается, что хэшированные хешированные значения для каждого контейнера упаковались в <tex>(2 \log n)/(c \log\log n)</tex> бит. Есть <tex>t</tex> наборов в каждом из которых <tex>q + p</tex> хэшированных хешированных контейнеров по <tex>(2 \log n)/(c \log\log n)</tex> бит в каждом. Эти числа должны быть отсортированы в каждом наборе. Комбинируя все хэш хеш контейнеры в один pool, сортируем следующим образом.
Теперь рассмотрим проблему упаковки, которая решается следующим образом. Считается, что число бит в контейнере <tex>\log m \ge \log\log\log n</tex>, потому, что в противном случае можно использовать radix sort для сортировки чисел. У контейнера есть <tex>h/ \log\log n</tex> хэшированных хешированных значений (сегментов) в себе на уровне <tex>\log h</tex> в ЭП-дереве. Полное число хэшированных хешированных бит в контейнере <tex>(2 \log n)(c \log\log n)</tex> бит. Хотя хэшированны хешированны биты в контейнере выглядят как <tex>0^{i}t_{1}0^{i}t_{2} \ldots t_{h/ \log\log n}</tex>, где <tex>t_{k}</tex>-ые это хэшированные хешированные биты, а нули это просто нули. Сначала упаковываем <tex>\log\log n</tex> контейнеров в один и получаем <tex>w_{1} = 0^{j}t_{1, 1}t_{2, 1} \ldots t_{\log\log n, 1}0^{j}t_{1, 2} \ldots t_{\log\log n, h/ \log\log n}</tex> где <tex>t_{i, k}</tex>: <tex>k = 1, 2, \ldots, h/ \log\log n</tex> из <tex>i</tex>-ого контейнера. Ипользуем <tex>O(\log\log n)</tex> шагов, чтобы упаковать <tex>w_{1}</tex> в <tex>w_{2} = 0^{jh/ \log\log n}t_{1, 1}t_{2, 1} \ldots t_{\log\log n, 1}t_{1, 2}t_{2, 2} \ldots t_{1, h/ \log\log n}t_{2, h/ \log\log n} \ldots t_{\log\log n, h/ \log\log n}</tex>. Теперь упакованные хэш хеш биты занимают <tex>2 \log n/c</tex> бит. Используем <tex>O(\log\log n)</tex> времени чтобы распаковать <tex>w_{2}</tex> в <tex>\log\log n</tex> контейнеров <tex>w_{3, k} = 0^{jh/ \log\log n}0^{r}t_{k, 1}O^{r}t_{k, 2} \ldots t_{k, h/ \log\log n} k = 1, 2, \ldots, \log\log n</tex>. Затем используя <tex>O(\log\log n)</tex> времени упаковываем эти <tex>\log\log n</tex> контейнеров в один <tex>w_{4} = 0^{r}t_{1, 1}0^{r}t_{1, 2} \ldots t_{1, h/ \log\log n}0^{r}t_{2, 1} \ldots t_{\log\log n, h/ \log\log n}</tex>. Затем используя <tex>O(\log\log n)</tex> шагов упаковать <tex>w_{4}</tex> в <tex>w_{5} = 0^{s}t_{1, 1}t_{1, 2} \ldots t_{1, h/ \log\log n}t_{2, 1}t_{2, 2} \ldots t_{\log\log n, h/ \log\log n}</tex>. В итоге используем <tex>O(\log\log n)</tex> времени для упаковки <tex>\log\log n</tex> контейнеров. Считаем что время потраченное на одно слово {{---}} константа.
==Литераура==
81
правка

Навигация