Изменения

Перейти к: навигация, поиск

Теорема о непринадлежности XOR классу AC⁰

878 байт добавлено, 00:17, 18 июня 2012
Теорема
<tex>\oplus \notin \mathrm{AC^0}</tex>.
|proof=
Рассмотрим произвольную схему из [[Классы NC и AC| класса]] <tex>\mathrm{AC^0}</tex>. Допустим, что эта схема распознает язык <tex>\oplus</tex>. В силу особенности языка <tex>\oplus</tex> , распознающая его схема должна зависить от всех своих входов. Однако воспользовавшись леммой, можно с большой вероятностью представить эту схему в виде КНФ или ДНФ. Заметим, что значение КНФ или ДНФ можно сделать постоянным, зафиксировав значение лишь одного дизъюнкта или конъюнкта соответственно. А значит, с высокой вероятностью произвольная схема из класса <tex>\mathrm{AC^0}</tex> не распознает язык <tex>\oplus</tex>, поскольку зависит не от всех входных значений.
Покажем, как представить схему из класса <tex>\mathrm{AC^0}</tex> в виде КНФ или ДНФ. Не умаляя общности, будем считать, что:
# Выходная степень каждого элемента равна <tex>1</tex>.
# Схема не содержит элементов <tex>\neg</tex>. Вместо этого удвоим число входов, причем значения, подаваемые на добавленные входы будут противоположны значениям, подаваемым на исходные входысхемы.
# Элементы <tex>\lor</tex> и <tex>\land</tex> чередуются. Значит, схему можно разбить на уровни так, что на каждом уровне все элементы будут одинаковыми.
# Все входы лежат на одном уровне. Нижний уровень схемы состоит из <tex>\land</tex> элементов с единичной степенью входа.
Построим итеративный процесс, на каждом шаге которого можно с высокой вероятностью уменьшить глубину схемы на <tex>1</tex>. Пусть <tex>d~-</tex> глубина схемы, а <tex>n_0~-</tex> число входовсхемы. Выберем минимальное целое <tex>b</tex> так, чтобы <tex>n_0^b</tex> было не меньше, чем число элементов в схеме. Обозначим <tex>n_i~-</tex> число входов схемы после <tex>i</tex>-го шага. Возьмем <tex>k_i=10b\cdot2^i.</tex>
[[Файл:beforeHastadSwitchingTransformation.png|600x250px|thumb|center|Схема на <tex>i</tex>-ом шаге.]]
Пусть Докажем по индукции, что после <tex>i</tex>-ого шага с высокой вероятностью глубина схемы будет <tex>d - i</tex>, причем наибольшая степень входа элемента на нижнем уровне не будет превосходить <tex>k_i</tex>.* База индукции верна. Для исходной схемы верно, что её глубина равна <tex>d</tex>, а входная степень каждого элемента равна <tex>1</tex>, что меньше <tex>k_0 = 10b.</tex>* Индукционный переход. Допустим, что после <tex>i</tex>-ого шага глубина схемы будет <tex>d - i</tex>, причем наибольшая степень входа элемента на нижнем уровне не будет превосходить <tex>k_i</tex>. Если нижний уровень схемы состоит из <tex>\land</tex> элементов, тогда уровень выше <tex>-</tex> из элементов <tex>\lor</tex>. Каждый <tex>\lor</tex> элемент можно считать <tex>k_i</tex>-ДНФ. Воспользуемся леммой. Пусть <tex>s = k_{i+1}</tex>, <tex>n~-</tex> число входов схемы, соответствующих рассматриваемому элементу <tex>\lor</tex>. Тогда в качестве <tex>t</tex> возьмем <tex>n - \frac{n}{\sqrt{n_i}}</tex>. Значит, с вероятностью не менее <tex>\left(\frac{k_i^{10}}{\sqrt{n_i}}\right) ^ {k_{i+1}/2}</tex> функцию нельзя представить в виде <tex>k_{i+1}</tex>-КНФ. ЗаметимПоскольку <tex>t</tex> выбиралось таким образом, что то при переходе к следющему шагу число входов схемы уменьшилось в <tex>\sqrt{n_i}</tex> раз, поэтому <tex>n_i = n_0^{1/2^i}.</tex> при таком выборе <tex>t</tex>. Тогда при достаточно больших <tex>n_0</tex> верно, что <tex>\left(\frac{k_i^{10}}{\sqrt{n_i}}\right) ^ {k_{i+1}/2} = \left(\frac{k_i^{10}}{n_0^{1/2^{i+1}}}\right) ^ {k_{i+1}/2} \le \frac{1}{10n_0^b}</tex>. В итоге получаем, что <tex>k_i</tex>-ДНФ можно переписать в виде <tex>k_{i+1}</tex>-КНФ с вероятностью не менее <tex>1 - \frac{1}{10n_0^b}</tex>. Поскольку верхний уровень КНФ состоит из <tex>\land</tex> элементов, также как и уровень над КНФ, то их можно объединить, уменьшив при этом глубину схемы на <tex>1</tex>. Аналогично рассматриваем случай, когда нижний уровень схемы состоит из <tex>\lor</tex> элементов.
[[Файл:afterHastadSwitchingTransformation.png|600x250px|thumb|center|Схема после применения леммы.]]
Анонимный участник

Навигация