Изменения
Нет описания правки
##* Корень дерева {{---}} <tex> \land </tex>. Пусть левое и правое поддерево <tex> x </tex> {{---}} это <tex> x_l </tex> и <tex> x_r </tex> соответственно. Тогда <tex> f(x) = f(x_l) \land f(x_r) </tex>.
##* Корень дерева {{---}} <tex> \lor </tex>. Пусть левое и правое поддерево <tex> x </tex> {{---}} это <tex> x_l </tex> и <tex> x_r </tex> соответственно. Создадим новую переменную <tex> z </tex>. Тогда <tex> f(x) = (f(x_l) \lor z) \land (f(x_r) \lor \neg{z}) </tex>. <tex> f(x_l) </tex> и <tex> f(x_r) </tex> {{---}} формулы в [[КНФ]], поэтому переменную <tex> z </tex> и ее отрицание можно внести в каждую скобку в <tex> f(x_l) </tex> и <tex> f(x_r) </tex>.
## Посчитаем какой длины будет <tex> f(x) </tex>. Это зависит от количества логических операций в формуле. Заметим, что количество скобок в конечной формуле равно количеству операций <tex> \land </tex>. Количество операций <tex> \land </tex> не более чем <tex> |x| </tex>, так как <tex> \land </tex> добавляется один раз в первом из рассмотренных выше случаев. А во втором из рассмотренных случаев добавляется <tex> \lor </tex> в том количестве, сколько скобок у нас есть. А количество скобок равно количеству <tex> \land </tex>, поэтому количество операций <tex> \lor </tex> не превысит <tex> |x|^2 </tex>. Поэтому <tex> f </tex> будет работать за полином.
}}
=== NP-полнота 3-SAT ===
<tex> \mathrm{3SAT} </tex>{{---}} язык булевых формул, заданных в [[КНФ]], таких что каждый дизъюнкт состоит ровно из 3 переменных и для этой булевой формулы существует подстановка, при которой она истинна.
<tex> \mathrm{3SAT} = \lbrace \varphi(x_1 \ldots x_n) \bigm| \varphi </tex> задано в 3КНФ и <tex> \exists x_1 \ldots x_n : \varphi(x_1 \ldots x_n) = 1 \rbrace </tex>
{{Теорема
|statement= <tex> \mathrm{3SAT} \in \mathrm{NPC} </tex>
|proof=
#<tex> \mathrm{3SAT} \in \mathrm{NP} </tex> <br> Можно написать недетерминированную программу <tex>p</tex>, которая распознает язык <tex> \mathrm{3SAT} </tex>. Она будет недетерминированно выбирать подстановку, проверять, истинна ли формула при такой подстановке, и выдавать ответ.
# <tex> \mathrm{3SAT} \in \mathrm{NPH} </tex> <br>Сведем задачу <tex> \mathrm{CNFSAT} </tex> к задаче <tex> \mathrm{3SAT} </tex>. Построим функцию <tex> f(x) </tex>, которая будет строить по булевой формуле в [[КНФ]], булевую формулу в 3-КНФ, такую что <tex> x \in \mathrm{CNFSAT} \Leftrightarrow f(x) \in \mathrm{3SAT} </tex>, причем <tex> |f(x)| \le p(|x|) </tex> для некоторого полинома <tex> p </tex>. <br> Опишем как будет работать функция <tex> f </tex>. <br> Заменим каждый дизъюнкт в <tex> x </tex> на может быть несколько дизъюнктов, которые состоят ровно из трех переменных.
## Дизъюнкт содержит не более трех переменных. Тогда возьмем какую-нибудь переменную из этого дизъюнкта и продублируем ее так, чтобы в нем стало ровно 3 переменных. Например: <tex> f(y \lor z) = (y \lor z \lor y) </tex>, <tex> f(y) = (y \lor y \lor y) </tex>
## Дизъюнкт содержит больше трех переменных. Пусть он имеет вид: <tex> (x_1 \lor x_2 \lor \ldots \lor x_k) </tex>, создадим новые переменные <tex> z_1, z_2, \ldots, z_{k - 2} </tex>, и тогда <br> <tex> f(x_1 \lor x_2 \lor \ldots \lor x_k) = (x_1~\lor~x_2~\lor~z_1)~\land~(x_3~\lor~\neg{z_1}~\lor~z_2)~\land~\ldots~\land~(x_i~\lor~\neg{z_{i - 2}}~\lor~z_{i - 1})~\land~\ldots~\land~(x_{k - 1}~\lor~x_k~\lor~\neg{z_{k - 2}}) </tex> <br> Можно заметить, что если какое-то <tex> x_i = 1 </tex>, то существует подстановка для <tex> z_1, z_2, \ldots, z_{k - 1} </tex>, такая что <tex> f(x_1 \lor x_2 \lor \ldots \lor x_k)</tex> удовлетворима. Также, если <tex> \forall i : x_i = 0 </tex>, нельзя удовлетворить все скобки, так как каждая скобка удовлетворяется только переменными <tex> z_1, z_2, \ldots, z_{k - 2} </tex>, можно понять, что при выборе значения <tex> z_1 </tex> все переменные восстанавливаются однозначно и значение <tex> z_{k - 2} </tex> нельзя выбрать так, чтобы удовлетворить последние две скобки одновременно.
:Заметим, что размеры формулы возрос не более чем в три раза, поэтому функция <tex> f </tex> будет работать за полином.
}}
=== NP-полнота раскраски графа ===
=== NP-полнота поиска минимального вершинного покрытия в графе ===