Изменения
Нет описания правки
Оптимальный коэффициент апроксимации для произвольного Парето-фронта из n точек [http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем|ограничивается <math> 1 + \Theta (1/n) </math>]. Докажем, что он равен асимптотическому коэффициенту апроксимации для множества из n точек максимизирующих значение индикатора гиперобъема.
Рассмотрим функции вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex>.. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A] и [b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a и B/b</tex>.