Рассмотрим функции вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(a)=B, f(A)=b</tex>. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков <tex> [a,A]</tex> и <tex>[b,B] </tex>. Так как для фиксированных констант <tex> \mu , \nu </tex> функция <tex> f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B ]</tex> и <tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, коэффициент аппроксимации зависит от значений <tex>A/a</tex> и <tex>B/b</tex>.
Множество всех таких функций обозначим через <tex>\mathbb{F}</tex>. Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты.
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>.
[http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем| Первая часть доказательства] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
В статье [1], п. 4 приведено доказательство того, что для данного вида функций всегда существует множество решение, максимизирующее значение индикатора гиперобъема, а также устанавливает значение коэффициент аппроксимации значением: <tex>1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
Конечно, зависимость от <tex> [a,A]</tex> и <tex>[b,B] </tex> в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.
[[Файл:file:///C:/Users/Alyona/Desktop/Untitled.jpg]]
==Основные определения==
{{Определение
|definition=Множество решений <tex>\mathrm{X=(x_1,x_2, \ldots , x_n)}</tex> называется <tex>\alpha</tex>-аппроксимацией функции <tex>f \in \mathbb{F}</tex>, если:
<tex>\mathrm{\forall x \in [a,A] \exists x_i \in X : (x \leq \alpha x_i) \bigwedge (f(x) \leq \alpha f(x_i))}</tex>
}}{{Определение|definition=Коэффицентом Коэффицент аппроксимации функции <tex>f</tex> на <tex>X</tex> равен:
<tex>\mathrm{\alpha (f, X) = inf \{\alpha | X} - \alpha</tex> аппроксимация <tex>f \}</tex>
Оптимальный коэффицент аппроксимации <tex>\alpha_{opt} = \sup \limits_{f \in \mathbb{F}} \inf \limits_{x \in \mathbb{X}} \alpha (f, X)</tex>
}}
{{Определение
|definition=Оптимальный коэффицент аппроксимации <tex>\alpha_{opt} = \sup \limits_{f \in \mathbb{F}} \inf \limits_{x \in \mathbb{X}} \alpha (f, X)</tex>
}}
{{Определение|definition=Индикатор называется эластичным по =Свзяь между максимизацией гиперобъема и аппроксимацией Парето-фронта==Рассмотрим функции вида: <tex>f:[a,A] \rightarrow [b,B]</tex>, где <tex>f</tex> убывает и <tex>f(Pareto-complianta)=B, если для любых двух множеств решения f(A)=b</tex>. Коэффициент апроксимации монотонно убывающих функций не зависит от масштабов отрезков <tex>[a,A]</tex> и <tex>[b,B] </tex> значение индикатора . Так как для фиксированных констант <tex>A\mu , \nu </tex> больше значения для функция <tex>f^*:[ \mu a , \mu A ] \rightarrow [ \nu b , \nu B]</tex> тогда и только тогда<tex> f^*= \nu f(x/ \mu ) </tex> имеет тот же коэффициент аппроксимации. Однако, когда коэффициент аппроксимации зависит от значений <tex>A/a</tex> доминирует и <tex>B/b</tex>. Множество всех таких функций обозначим через <tex>\mathbb{F}</tex>. Далее будем рассматривать только монотонно убывающие, полунепрерывные Парето-фронты. Условие полунепрерывности необходимо для того, [http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем| чтобы существовало множество решение, максимизирующее индикатор гиперобъема]. Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из n (<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из n точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>.
=Индикатор гиперобъема=
{{Определение
|definition=Пусть дано множество решения <tex>\mathrm{X \in \mathbb{R}^d}</tex>. Пусть также множество всех решений усечено некоторой точкой <tex>\mathrm{r = \left(r_1, r_2, \ldots, r_d \right)}</tex>. Тогда:
Гиперобъем является единственным унарным индикатором эластичным по Парето(Pareto-compliant).
}}
{{Утверждение
|statement=Пусть <tex>f \in \mathbb{F}, n \in \mathbb{N}</tex>.
Тогда существует, не обязятельно единственное, множество решения <tex>X \in \mathbb{X}</tex>, которое максимизирует значение <tex>HYP(X)</tex> на <tex>\mathbb{X}</tex>
|proof=
См. [[http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем|статью Гиперобъем]]
}}
=Нахождение лучшего коэффициента аппроксимации=
[[http://neerc.ifmo.ru/wiki/index.php?title=Эволюционные_алгоритмы_многокритериальной_оптимизации,_основанные_на_индикаторах._Гиперобъем| Доказательство]] ограничивает значение оптимального коэффицента апроксимации сверху: <tex>1 + \frac{\log (\min ( \frac{A}{a}, \frac{B}{b}))}{n}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
=Нахождение коэффициента аппроксимации множества решения максимизируюшего гиперобъем=
{{Утверждение 1.
|statement=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X= \left(x_1, x_2, \ldots, x_d \right) \in X </tex>.
Тогда [[http://neerc.ifmo.ru/wiki/index.php?title=Сложность_задачи_вычисления_Least_Hypervolume_Contributor_и_задачи_его_аппроксимации| MINCON]] данного множество решения:
<tex>MINCON(X) \leq \frac{(x_n - x_1)(f(x_1) - f(x_n))}{(n-2)^2}</tex>
|proof=
}}
В статье [1], п. 4 приведено доказательство того, что для данного вида функций всегда существует множество решение, максимизирующее значение индикатора гиперобъема, а также устанавливает значение коэффициент аппроксимации значением: <tex>1 + \frac{ \sqrt{ \frac{A}{a}} + \sqrt{ \frac{B}{b}}}{n - 4}</tex> = <math> 1 + \Theta ( \frac{1}{n}) </math>.
=Примечание=
Конечно, зависимость от <tex> [a,A]</tex> и <tex>[b,B] </tex> в аппроксимационном коэффициенте оптимального множества решения меньше чем в аппроксимационном коэффициенте для множества, максимизирующего гиперобъем. Однако, полученная граница для коэффициента аппроксимации является верхней. На рисунке ниже Вы можете увидеть пример поведения данных значений для определенного класса функций.
[[Файл:Untitled.jpg]]
==Источники==
# [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/4/2010GECCO_Hyp.pdf Friedrich T., Bringmann K. - The Maximum Hypervolume Set Yields Near-optimal Approximation]