64
правки
Изменения
м
→Основные определения
|id=definition3
|about=3
|definition=Пусть <tex>f \in \mathbb{F}, n \geq 3</tex> и <tex>X = (x_1, \ldots, x_n) \in \mathbb{X}</tex>. Вкладом этого множества<tex>i</tex>-й точки в гиепробъем решения называется <tex>Con(i, X) = (x_i-x_{i - 1})(f(x_i) - f(x_{i + 1}))</tex>.
Минимальным вкладом этого множества -решения в гиперобъем называется <tex>MinCon(X) = \min \limits_{2 \leq i \leq n - 1} (x_i-x_{i - 1})(f(x_i) - f(x_{i + 1}))</tex>.
}}
Далее будем рассматривать только монотонно убывающие, полунепрерывные [[Задача многокритериальной оптимизации. Multiobjectivization#Множество Парето оптимальных значений|Парето-фронты]]. Условие полунепрерывности необходимо для того, [[#statement1|чтобы существовало множество-решение, максимизирующее индикатор гиперобъема]].
Рассмотрим оптимальный коэффициент апроксимации для данного Парето-фронта из <tex>n </tex> точек(<tex> \alpha _{OPT}</tex>) и верхнюю границу коэффициента аппроксимации для множества из <tex>n </tex> точек, максимизирующего значение индикатора гиперобъема (<tex> \alpha _{HYP}</tex>) и докажем, что для количества точек <tex> n </tex> они одинаковы, а именно <math> 1 + \Theta ( \frac{1}{n}) </math>.
==Индикатор гиперобъема==