Изменения

Перейти к: навигация, поиск

Лемма Бернсайда, задача о числе ожерелий

21 байт добавлено, 19:05, 10 августа 2010
решение:
<tex>n</tex> — четно. Ожерелья, симметричные относительно оси проходящей между бусинами, существуют только если все <tex>n_i (i \in [1..m])</tex> четные. Если ось проходит через <tex>2</tex> бусины, то симметричные ожерелья существуют только если все <tex>n_i (i \in [1..m])</tex> четные '''или''' если только <tex>2</tex> из <tex>n_i (i \in [1..m])</tex> не четные. Рассмотрим оба случая:
''a)Пусть '' <tex>n_1, n_2</tex> ''— не четные'', <tex>n_i (i \in [3..m])</tex> — четные, <tex>d</tex> — симметрия относительно некой оси, проходящей через противоположные вершины. Тогда неподвижными точками для <tex>d'</tex> будут ожерелья, симметричные относительно оси, проходящей через вершины <tex>n_1</tex> и <tex>n_2</tex> сортов. По одну сторону находятся от оси находятся <tex>\frac {n-2} { 2 }</tex> бусин, где <tex>\frac {n_1-1} { 2 },</tex> бусин <tex>n_1</tex> цвета, <tex>\frac {n_2-1} { 2 },</tex> бусин <tex>n_2</tex> цвета <tex>\frac {n_i} { 2 },</tex> бусин <tex>[3..m]</tex> цвета. Бусины <tex>n_1</tex> и <tex>n_2</tex> цвета можно поменять местами <tex>\Rightarrow</tex> количество неподвижных точек <tex>t(d')=2P(\frac {n_1-1} { 2 }, \frac {n_2-1} { 2 }, ..., \frac {n_m} { 2 })</tex>. Таких симметрий <tex>\frac {n} {2} \Rightarrow S'=m \cdot P([\frac {n_1} { 2 }], [\frac {n_2} { 2 }], ..., [\frac {n_m} { 2 }])</tex>.
''б)Пусть все '' <tex>n_i</tex> — ''четные''.
[[Категория:Теория групп]]
Анонимный участник

Навигация