Изменения

Перейти к: навигация, поиск

Функции ограниченной вариации

9 байт убрано, 15:09, 23 июня 2012
Нет описания правки
аддитивность вариации
|statement=
Пусть <tex>f(x) \in \bigvee(a, c)</tex> и <tex>b \in [a, c]</tex>, тогда <tex>\bigvee\limits_a^c (f) = \bigvee\limits_a^b (f) = + \bigvee\limits_b^c (f)</tex>.
|proof=
1) Рассмотрим разбиения <tex>\tau_1: a = x_0 < \dots < x_p = b, \tau_2: b = x_p < \dots < x_{p + m} = c</tex>.
{{Теорема
|statement=
Если <tex>f</tex> — функция ограниченной вариации (<tex>f \in \bigvee(a, b)</tex>) тогда и только тогда, когда ее можно представить в виде разности монотонно неубывающих функций (<tex>f = f_1 - f_2</tex>).
|proof=
Возьмем в качестве <tex>f_1</tex> функцию <tex>f_1(x) = \bigvee\limits_a^x (f)</tex>, тогда по аддитивности она будет не убывать.

Навигация