Изменения

Перейти к: навигация, поиск

Теорема Фейера

1 байт добавлено, 13:01, 26 июня 2012
Теорема Фейера в L_1: вынес следствие о двух пределах из текста теоремы
}}
Например, любая точка непрерывности {{---}} регулярная.
 
{{Утверждение
|about=
следствие Фейера о двух пределах
|statement=
Пусть точка <tex>x</tex> — регулярная, тогда в ней <tex>\lim\limits_{n \to \infty} \sigma_n(f, x) = \frac{f(x + 0) + f(x - 0)}2 </tex>
|proof=
Пусть <tex>s = \frac{f(x - 0) + f(x + 0)}{2} </tex>.
 
Так как <tex>f(x + t) \xrightarrow[t\to +0]{} f(x + 0), f(x - t) \xrightarrow[t\to -0]{} f(x - 0) </tex>, по определению предела <tex> \forall\varepsilon\exists\delta : 0 < t < \delta : |f(x \pm t) - f(x \pm 0)| < \varepsilon</tex>.
 
Для таких <tex>t</tex>: <tex>|f(x + t) + f(x - t) - 2s| \leq |f(x + t) - f(x + 0)| + |f(x - t) - f(x - 0)| < 2\varepsilon</tex>,
 
и интересующий нас интеграл <tex>\frac1t\int\limits_0^t|f(x+t)+f(x-t)-2s| \leq \frac1t\int\limits_0^t2\varepsilon = 2\varepsilon</tex>.
 
Значит, условие теоремы Фейера для данного интеграла выполняется, и в регулярной точке, <tex>\lim\limits_{n \to \infty} \sigma_n(f, x) = \frac{f(x + 0) + f(x - 0)}2 </tex>.
 
В частности, в точке непрерывности функции суммы Фейера всегда сходятся к значению функции в данной точке.
}}
 
<tex>\varphi_x(t) \stackrel{\mathrm{def}}= f(x + t) + f(x - t) - 2s</tex>
Оба интеграла стремятся к нулю, теорема Фейера доказана.
}}
 
 
{{Утверждение
|about=
следствие Фейера о двух пределах
|statement=
Пусть точка <tex>x</tex> — регулярная, тогда в ней <tex>\lim\limits_{n \to \infty} \sigma_n(f, x) = \frac{f(x + 0) + f(x - 0)}2 </tex>
|proof=
Пусть <tex>s = \frac{f(x - 0) + f(x + 0)}{2} </tex>.
 
Так как <tex>f(x + t) \xrightarrow[t\to +0]{} f(x + 0), f(x - t) \xrightarrow[t\to -0]{} f(x - 0) </tex>, по определению предела <tex> \forall\varepsilon\exists\delta : 0 < t < \delta : |f(x \pm t) - f(x \pm 0)| < \varepsilon</tex>.
 
Для таких <tex>t</tex>: <tex>|f(x + t) + f(x - t) - 2s| \leq |f(x + t) - f(x + 0)| + |f(x - t) - f(x - 0)| < 2\varepsilon</tex>,
 
и интересующий нас интеграл <tex>\frac1t\int\limits_0^t|f(x+t)+f(x-t)-2s| \leq \frac1t\int\limits_0^t2\varepsilon = 2\varepsilon</tex>.
 
Значит, условие теоремы Фейера для данного интеграла выполняется, и в регулярной точке, <tex>\lim\limits_{n \to \infty} \sigma_n(f, x) = \frac{f(x + 0) + f(x - 0)}2 </tex>.
 
В частности, в точке непрерывности функции суммы Фейера всегда сходятся к значению функции в данной точке.
}}
 
Заметим, что если в теореме Фейера <tex>f \in C</tex> (непрерывные <tex>2\pi</tex>-периодические функции), то теорема выполнена в каждой точке <tex>x</tex>, и, самое важное, равномерно по <tex>x</tex>, то есть,
Анонимный участник

Навигация