Изменения

Перейти к: навигация, поиск

Теорема Лузина-Данжуа

122 байта убрано, 19:25, 4 сентября 2022
м
rollbackEdits.php mass rollback
Тогда <tex> \exists A_0 \subset A: \lambda A_0 > 0, \alpha(x) </tex> — ограничена на <tex> A_0 </tex>. <tex> A = \bigcup\limits_{n = 1}^{\infty} A(0 \le \alpha(x) \le n), \lambda A > 0 \Rightarrow \lambda A_n \to \lambda A \Rightarrow \exists n_0 : \lambda A_{n_0} > 0 </tex>, обозначим такой <tex>A_{n_0} </tex> за <tex> A_0 </tex>.
На <tex> A_0 </tex> <tex> \alpha </tex> — суммируема, по [[Классические теоремы о предельном переходе под знаком интеграла Лебега#Теорема Леви|теореме Б. Леви]], ряд можно почленно интегрировать. {{TODO|t=Почему можно выделить такое множество <tex>A_0</tex> конечной меры?}}
<tex> \int\limits_{A_0} \alpha(x) dx = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \cos^2(nx + \varphi_{n, x}) = \sum\limits_{n=1}^{\infty} r_n \int\limits_{A_0} \frac{1 + \cos(2nx + 2\varphi_{n, x})}{2} = </tex>
<tex> \left( \sum\limits_{k=n}^{\infty}(a_k^2 + b_k^2) \right)^{\frac12} </tex> равно <tex> E_{n-1}(f)_2 </tex>
<tex> \left( \sum\limits_{k=n}^{\infty} \left( \frac1{k^2} \right)^{\frac12} \le \left( \sum\limits_{k=n}^{\infty} \left( \frac1{k}\frac1{k-1} \right)^{\frac12} \le \left( \sum\limits_{k=n}^{\infty} \left( \frac1{k-1} - \frac1k \right)^{\frac12} \le \frac{1}{\sqrt{n-1}} </tex>
Таким образом, получили, что <tex>\sum\limits_{k=1}^{\infty} \sqrt{a_k^2 + b_k^2} \le \sqrt{a_1^2 + b_1^2} + \sum\limits_{n=2}^{\infty} \frac{cE_{n-1}(f)_{L_2}}{\sqrt{n-1}} < + \infty </tex>, таким образом, ряд из <tex> r_n </tex> сходится.
1632
правки

Навигация