1679
правок
Изменения
→Интегральная формула Фурье: аналог признака Дини, как-то так вроде.
Это соотношение позволяет сформировать и доказать аналог теоремы Дини сходимости интеграла Фурье.
{{Утверждение|about=признак Дини сходимости интеграла Фурье|statement=Пусть <tex>f \in L_1, s \in \mathbb{R}</tex>. Если существует <tex>\Delta > 0: \int\limits_0^{\Delta} \frac{\varphi_x(t)}{t} dt < + \infty</tex>, то <tex> s = \lim\limits_{A \to \infty} I(A)</tex>.|proof=
Предположим, что для некоторого <tex>\Delta</tex>: <tex>\int\limits_0^\Delta \frac{|f(x+t)+f(x-t)-2s|}t dt = \int\limits_0^\Delta \frac{|\varphi_x(t)|}t dt < +\infty</tex>. Возьмём <tex>\delta \in (0; \Delta)</tex>.
<tex>\le \frac1\pi\left(\int\limits_0^\delta\frac{|\varphi_x(t)|}{t}dt+ \left|\int\limits_\delta^{+\infty} \varphi_x(t) \frac{\sin At}{t} dt\right| \right)</tex>
Далее считаем, что <tex>\delta</tex> уже такое и заметим, что оно выбрано вне зависимости от <tex>A</tex>. Значит,
<tex>|I(A)-s| \le \frac1\pi\left( \varepsilon + \left| \int\limits_\delta^{+\infty}\varphi_x(t)\frac{\sin At}t dt\right| \right)</tex>
Рассмотрим второе слагаемое: <tex>\int\limits_\delta^{+\infty} \varphi_x(t) \frac{\sin At}{t } dt = \int\limits_\delta^{+\infty} \frac{\sin Atf(x+t) +f(x-t)}{Att} d(\sin At) = dt - 2s \int\limits_{\delta A}^{+\infty} \frac{\sin At}{t}t dt</tex>, что, при <tex>A\to+\infty</tex>, стремится к <tex>0</tex>.
Для второго интеграла: <tex>\int\limits_\delta^{+\infty} \frac{\sin At}t dt = \int\limits_\delta^{+\infty} \frac{\sin At}{At} d(At) = \int\limits_{\delta A}^{+\infty} \frac{\sin t}t dt</tex>, что, при <tex>A\to+\infty</tex>, стремится к <tex>0</tex>. Значит, при <tex>A\to\infty</tex>, <tex>\int\limits_\delta^{+\infty} \frac{\sin At}{t} dt \to 0</tex>
Тогда <tex>\frac{|f(x+t)| + |f(x-t)|}{\delta}</tex> {{---}} суммируемая, а значит, и <tex>\left| \frac{f(x+t)+f(x-t)}{t}\right|</tex> {{---}} суммируемая. Возвращаясь к интегралу, по лемме Римана-Лебега, <tex>\int\to_{A\to\infty} 0</tex>.
Принимая это во внимание в оценке отклонения <tex>|I(A) - s| \le \frac2\pi \varepsilon</tex>, получаем, что <tex>s = \lim\limits_{A\to+\infty} I(A)</tex>, или, <tex>s = \frac1\pi\int\limits_0^{+\infty}\left(\int\limits_{\mathbb{R}}f(t)\cos z(x-t) dt\right)dz</tex> в условиях, когда <tex>\int\limits_0^\Delta \frac{|\varphi_x(t)|}{t} dt <+\infty</tex>.
}}
В частности, если, как и в рядах Фурье, в точке <tex>x</tex> существуют односторонние пределы, что если <tex>s=\frac{f(x+0)+f(x-0)}{2}</tex>, то для этого <tex>s</tex> условия Дини выполняются, что и доказывает эту теорему.