1302
правки
Изменения
м
→Введение
== Введение ==
Напомним, что, имея последовательность суммы вещественных чисел <tex>\{a_n\}</tex>, рядом мы называли символ <tex>\sum\limits_{i = 1}^\infty a_i</tex>. Ряды можно складывать и умножать на число. Далее, мы определили <tex>\sum\limits_{i = 1}^\infty a_i = \lim\limits_{n \rightarrow \infty} \sum\limits_{i = 1}^n a_i</tex>.
Мы показали, что, исходя из этого равенства, для сходимости ряда частичных сумм необходимо условие <tex>a_n \rightarrow 0</tex>. Например, ряд <tex>\sum\limits_{n = 0}^\infty (-1)^n</tex> не сходится (не имеет суммы в представленном выше смысле), поскольку <tex>(-1)^n</tex> предела не имеет.