Изменения

Перейти к: навигация, поиск

Алгоритм Борувки

487 байт добавлено, 00:14, 15 декабря 2012
Идея
Впервые был опубликован в 1926 году Отакаром Борувкой.
==ИдеяОписание алгоритма==<tex>F</tex> — подграф исходого графа <tex>G</tex>.пока <tex>F</tex> не является деревом: 1)для каждой компоненты связанности находим минимальное ребро, которое связывает вершину из данной компоненты с вершиной не принадлежащей данной компоненте. 2) добавим в t  
Будем последовательно строить подграф <tex>F</tex> графа <tex>G</tex> ("растущий лес"), поддерживая следующий инвариант: на каждом шаге <tex>F</tex> можно достроить до некоторого MST. Начнем с того, что включим в <tex>F</tex> все вершины графа <tex>G</tex>. Теперь будем обходить множество <tex>EG</tex> в порядке увеличения веса ребер. Добавление очередного ребра <tex>e</tex> в <tex>F</tex> может привести к возникновению цикла в одной из компонент связности <tex>F</tex>. В этом случае, очевидно, <tex>e</tex> не может быть включено в <tex>F</tex>. В противном случае <tex>e</tex> соединяет разные компоненты связности <tex>F</tex>, тогда существует [[Лемма о безопасном ребре#Необходимые определения|разрез]] <tex> \langle S, T \rangle </tex> такой, что одна из компонент связности составляет одну его часть, а оставшаяся часть графа - вторую. Тогда <tex>e</tex> и есть минимальное ребро, пересекающее этот разрез. Значит, из [[Лемма о безопасном ребре|леммы о безопасном ребре]] следует, что <tex>F+e</tex> можно продолжить до MST, поэтому добавим это ребро в <tex>F</tex>.<br>
Несложно понять, что после выполнения такой процедуры получится остовное дерево, при этом его минимальность вытекает из леммы о безопасном ребре.
394
правки

Навигация