Изменения
→Специализация алгоритма для генерации следующего сочетания
== Алгоритм ==
{{Определение|definition= '''Получение следующего объекта''' {{---}} это нахождение объекта, следующего за данным в [[Лексикографический порядок|лексикографическом порядке]].
Отсюда понятен алгоритм:
* Находим находим суффикс минимальной длины, который можно изменить без изменения префикса текущего объекта <tex>P</tex>,* К к оставшейся части дописываем минимальный возможный элемент (чтобы было выполнено правило <tex>P < Q</tex>),* Дописываем дописываем минимальный возможный хвост.
По построению получаем, что <tex>Q</tex> {{---}} минимально возможный.
== Специализация алгоритма для генерации следующего битового вектора ==
* Находим минимальный суффикс, в котором есть <tex>0</tex>, его можно увеличить, не меняя оставшейся части* Вместо <tex>0 </tex> записываем <tex>1 </tex> 
* Дописываем минимально возможный хвост из нулей
 '''int[]''' nextVector('''int[]''' a): <font color=green>// <tex>n</tex> {{---}} длина вектора<code/font> for i    '''while''' (n >= n downto 1     if 0) '''and''' (a[in] =!= 0)                a[in] = 10       n--         for j    '''if''' n = i + = -1 to n                  '''return''' ''null''   a[jn] = 01         break   '''return''' a</code>Приведённый алгоритм эквивалентен прибавлению единицы к битовому вектору. 
=== Пример работы ===
{| class="wikitable" border = 1
|0||1||0||1||style="background:#FFCC00"|0||1||1||исходный битовый вектор
|-
| || ||^|| || ^||находим элемент 0 (самый правый)начинаем идти с конца
|-
|0||1||0||style="background:#FFCC00"|10||style="background:#FFCC00"|10||пока элементы равны 1||меняем его , заменяем их на 10
|-
|0||1||1||style="background:#FFCC00"|1||0||style="background:#FFCC00"|0||меняем элементы правее первый не удовлетворяющий условию цикла элемент на нули1
|-
|'''0'''||'''1'''||'''1'''||'''0'''||'''0'''||следующий битовый вектор
== Специализация алгоритма для генерации следующей перестановки ==
* Двигаясь справа налево, находим элаементэлемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример)
* Меняем его с минимальным элементом, большим нашего, стоящим правее
* Перевернем правую часть
  '''int[]''' nextPermutation('''int[]''' a): <font color=green>// <codetex>n</tex> {{---}} длина перестановки</font>    '''for ''' i = n - 1 2 '''downto 1''' 0     '''if ''' a[i] < a[i + 1]       min = i + 1;       '''for''' j = i + 1 '''to''' n - 1         // '''if''' (a[j] = < a[min {]) '''and''' (a[j] > a[i], где )           min = j > i}                swap(a[i], a[jmin])                reverse(a[, i + 1] .. a[, n]- 1)         break       '''return''' a   '''return''' ''null'' </code>
=== Пример работы ===
{| class="wikitable" border = 1
|-
|'''1'''||'''3'''||'''4'''||'''2'''||'''5'''||следующая перестановка
|}
== Специализация алгоритма для генерации следующей мультиперестановки ==
* Двигаясь справа налево, находим элемент, нарушающий убывающую последовательность (в обычном порядке, слева направо, см. пример).
* Меняем его с минимальным элементом, большим нашего, стоящим правее.
* Переворачиваем правую часть.
 '''int[]''' nextMultiperm('''int[]''' b):  <font color=green>// <tex>n</tex> {{---}} длина мультиперестановки</font>
     i = n - 2
     '''while''' (i >= 0) '''and''' (b[i] >= b[i + 1]) 
       i--
     '''if''' i >= 0 
       j = i + 1
       '''while''' (j < n - 1) '''and''' (b[j + 1] > b[i]) 
         j++
       swap(b[i] , b[j])
       reverse(b, i + 1, n - 1)
       '''return''' b
     '''else'''
       '''return''' ''null''
=== Пример работы ===
{| class="wikitable" border = 1
|1||2||3||1||style="background:#FFCC00"|2||style="background:#FFCC00"|3||Исходная перестановка.
|-
| || || || ||^|| ||Находим элемент, нарушающий убывающую последовательность.
|-
| || || || || ||^||Минимальный элемент больше нашего.
|-
|1||2||3||1||style="background:#FFCC00"|3||style="background:#FFCC00"|2||Меняем их местами.
|-
|'''1'''||'''2'''||'''3'''||'''1'''||'''3'''||'''2'''||Следующая мультиперестановка.
|}
== Специализация алгоритма для генерации следующего сочетания ==
* Добавим в конец массива с сочетанием <tex>N+1</tex> – максимальный элемент.
* Пойдём справа налево. Будем искать номер элемента, который отличается от предыдущего на <tex>2</tex> и больше.
* Увеличим найденный элемент на <tex>1</tex>, и допишем в конец минимально возможный хвост, если такого элемента нет – на вход было дано последнее сочетание.
 '''int[]''' nextChoose('''int[]''' a, '''int''' n, '''int''' k): <font color=green>// <tex>n,k </tex> {{---}} параметры сочетания</font>
   '''for''' i = 0 '''to''' k - 1 
     b[i] = a[i]
   b[k] = n + 1
   i = k - 1
   '''while''' (i >= 0) '''and''' (b[i + 1] - b[i] < 2) 
     i--
   '''if''' i >= 0 
      b[i]++
      '''for''' j = i + 1 '''to''' k - 1 
        b[j] = b[j - 1] + 1
      '''for''' i = 0 '''to''' k - 1 
        a[i] = b[i]
      '''return''' a
   '''else'''
     '''return''' ''null''
=== Пример работы ===
{| class="wikitable" border = 1
|1||2||5||6||style="background:#FFCC00"|'''7'''||Дописываем 7 в конец сочетания.
|-
|1||style="background:#FFCC00"|2||5||6||'''7'''||
|-
| ||^|| || || ||Находим элемент i, a[i + 1] - a[ i ] >= 2
|-
|1||style="background:#FFCC00"|3||5||6||'''7'''||Увеличиваем его на 1.
|-
|1||3||style="background:#FFCC00"|4||style="background:#FFCC00"|5||style="background:#FFCC00"|'''6'''||Дописываем минимальный хвост.
|-
|'''1'''||'''3'''||'''4'''||'''5'''||''' '''||Следующее сочетание.
|}
== Специализация алгоритма для генерации следующего разбиения на слагаемые ==
Рассматриваемый алгоритм находит следующее [[комбинаторные объекты|разбиение на слагаемые]], при этом разбиение упорядоченно по возрастанию.
* Увеличим предпоследнее слагаемое на <tex>1</tex>, уменьшим последнее слагаемое на <tex>1</tex>.
** Если предпоследнее слагаемое стало больше последнего, то увеличиваем предпоследнее слагаемое на величину последнего.
** Если предпоследнее слагаемое умноженное на 2 меньше последнего, то разбиваем последнее слагаемое <tex>s</tex> на два слагаемых <tex>a</tex> и <tex>b</tex> таких, что <tex>a</tex> равно предпоследнему слагаемому, а <tex>b = s - a</tex>. Повторяем этот процесс, пока разбиение остается корректным, то есть предпоследнее слагаемое хотя бы в два раза меньше последнего.
<code>
 <font color=green>// <tex>b</tex> {{---}} список, содержащий разбиение данного числа <tex>b.size</tex>{{---}} его размер </font>
 '''list<int>'''  nextPartition('''list<int>''' b): 
    b[b.size - 1]--
    b[b.size - 2]++
    '''if''' b[b.size - 2] > b[b.size - 1] 
       b[b.size - 2] += b[b.size - 1]
       b.remove(b.size - 1)
    '''else'''
      '''while''' b[b.size - 2] * 2 <= b[b.size - 1] 
        b.add(b[b.size - 1] - b[b.size - 2])
        b[b.size - 2] = b[b.size - 3]
    '''return''' b
</code>
=== Пример работы ===
{| class="wikitable" border = 1
|1||style="background:#FFCC00"|1||style="background:#FFCC00"|7|| || ||Прибавим 1 + 1, вычтем 7 - 1.
|-
|1||style="background:#FFCC00"|2||style="background:#FFCC00"|6|| || ||Проверяем: 2 < 6, значит разбиваем 6 пока оно не станет меньше 4
|-
|1||2||style="background:#FFCC00"|2||style="background:#FFCC00"|4|| ||
|-
|1||2||2||style="background:#FFCC00"|2||style="background:#FFCC00"|2||
|-
|'''1'''||'''2'''||'''2'''||'''2'''||'''2'''||Следующее разбиение на слагаемые числа 9.
|}
{| class="wikitable" border = 1
|1||style="background:#FFCC00"|4||style="background:#FFCC00"|5||Прибавим 4 + 1, вычтем 5 - 1.
|-
|1||style="background:#FFCC00"|5||style="background:#FFCC00"|4||Проверяем: 5 > 4, значит прибавим к 5 + 4.
|-
|1||9||style="background:#FFCC00"|4||Удалим последний элемент.
|-
|'''1'''||'''9'''||||Следующее разбиение на слагаемые числа 10.
|}
== Специализация алгоритма для генерации следующего разбиения на подмножества ==
Рассмотрим множество первых n натуральных чисел:<tex>N_n = \{1) Каждый раз, рассматривая новый элемент2, ..., будем пытаться заменить его уже удаленным элементом из нашего массиваn\}</tex> Упорядочим все разбиения на множества <tex>N_n</tex> лексикографически. Для этого, во-первых, так чтобы не нарушалась возрастающая последовательность элементов    в этом подмножествекаждом разбиении упорядочим множества лексикографически. Из Будем говорить, что подмножество <tex> A \subset N_n </tex> лексикографически меньше подмножества <tex> B \subset N_n </tex> , если верно одно из следующих условий: *существует <tex>i</tex> такое, что <tex>i \in A</tex> , <tex>i \notin B</tex>, для всех подходящих элементов выбираем минимальный. '''Важное замечание'''<tex>j < i: мы не можем заменить 1ый элемент подмножестваj \in A</tex> если и только если <tex>j \in B</tex> , мы можем только удалить егои существует <tex>k > i</tex> такое что <tex>k \in B</tex>;* <tex> A \subset B </tex> и <tex>i < j</tex> для всех <tex>i \in A</tex> и <tex>j \in B</tex> \ <tex> A </tex>.
* Двигаясь снизу вверх и справа налево, будем удалять элементы, записывая их в отдельный массив. Будем повторять эту операцию, пока не сможем выполнить одно из действий, описанных ниже:
** Заменить рассматриваемый элемент уже удаленным. Из всех подходящих элементов выбираем минимальный. '''Важное замечание''': мы не можем заменить первый элемент подмножества, мы можем только удалить его.
** Дополнить рассматриваемое подмножество уже удаленным элементом. Из всех подходящих элементов выбираем минимальный.
* Допишем лексикографически минимальный хвост подмножеств из оставшихся элементов.
<code>
 '''list<list<int>>''' nextSetPartition('''list<list<int>>''' a):  <font color=green>// <tex>a </tex> {{- матрица содержащая --}} список, содержащий подмножества</font>   <font color=green>// <tex>used </tex> {{- массив --}} список, в котором мы храним, удаленные элементы</font>   used = '''list<int>'''  fl = ''false''  '''for ''' i = n a.size - 1 '''downto ''' 0  //перебираем все подмножества, начиная с последнего           '''if ''' (used.size != 0) '''and''' ( used[used.size - 1] > a[i][a[i].size - 1])   <font color=green>//*если можем добавить в конец подмножества элемент из <tex>used*</tex></ font>          a[i].add(used[used.size - 1]){           <font color=green>// добавляем</font>          used.remove(used.size - 1)                   '''break;'''     }           '''for ''' j = m a[i].size - 1 '''downto ''' 0  // перебираем все элементы текущего подмножества                   '''if''' (used.size != 0) '''and''' (j != 0) '''and''' ( used[used.size - 1] > a[i][j])    <font color=green>/* /если можем заменить элемент, другим элементом из массива списка <tex>used*</tex> </ ){font>                         a[i][j] = used[used.size - 1]   <font color=green>//заменяем</font>             fl = ''true''                         '''break;'''         }      '''if''' fl '''break'''               used.add(a[i][j]);   <font color=green>//удаляем элемент и добавляем его в массив<tex>used</tex> <tex>j</tex> элемент <tex>i</tex>-го подмножества</font>  printsets      a[i].remove(j);                 <font color=green>//удаляем <tex>j</tex> элемент <tex>i</tex>-го подмножества</font>  <font color=green>//далее выведем все получившиеся подмножества</font>   sort(used);                //отсортируем массив оставшихся элементов   '''for ''' i = 0 '''to ''' used.size- 1     a.add() do    println'''list<int>'''(used[i]);     )   <font color=green>//выведем добавляем лексикографически минимальный минимальных хвост</font>  '''return''' a</code>
=== Пример работы ===
'''Рассмотрим следующее разбиение:'''
 {| class="wikitable" border = 1|1, ||2, ||3}{|-|4, ||5|| |}
'''1 Шаг:'''
{| class="wikitable" border = 1|1||2||3|||-|4||style="background:#FFCC00"|5|||||-| ||^|| ||Удалили элемент 5.    |-| || || ||used|} 
'''2 Шаг:'''
{| class="wikitable" border = 1|1||2||3|||-|style="background:#FFCC00"|4|| |||||-|^|| || ||Удалили элемент 4. Так как он является первым в подмножестве, то мы не можем заменить его на другой.|-|5|| || ||used|} 
'''3 Шаг:'''
{| class="wikitable" border = 1|1||2||3||style="background:#FFCC00"|4|||-| || || ||^||Дополнили первое подмножество элементом 4(так как он минимальный из всех элементов, которыми мы могли его дополнить), и дописали |-|5|| || || ||used|}    '''4 Шаг:'''      {| class="wikitable" border = 1|1||2||3||4|||-|style="background:#FFCC00"|5|| || || ||Дописали лексикографически минимальный хвост.|-| || || || ||used|}
== Ссылки См.также ==* [[Получение предыдущего объекта]]
* [[Получение объекта по номеру]]
* [[Получение номера по объекту]]
== Источники информации ==
* [http://rain.ifmo.ru/cat/view.php/vis/combinations/permutations-2000 Визуализатор перестановок]
* [http://cppalgo.blogspot.com/2011/02/episode-2.html Пример компактного кода для перестановок (С++)]
