668
правок
Изменения
→Пример
Два игрока по очереди подбрасывают правильную игральную кость. Выигрывает тот, кто первым выкинет шесть очков. Найти вероятность победы игрока, начинающего игру.
Шесть очков может впервые выпасть при первом, втором, и так далее. бросках кости. Первый игрок побеждает, если это случится при броске с нечётным номером, второй — с чётным. Пусть событие <tex> A_{k} </tex> состоит в том, что что шесть очков впервые выпадет в испытании с номером <tex>k</tex>. По лемме, <tex dpi = "160"> P(A_{k}) = </tex> <tex dpi = "160">\frac{1}{6} \cdot (\frac{5}{6})^{k - 1} </tex>
События <tex>A , B</tex>, означающие победу первого и второго игроков соответственно, представимы в виде объединения взимоисключающих событий:
<tex> A = A_{1} \cup A_{3} \cup A_{5} \cup . . . , B = B_{2}\cup B_{4} \cup B_{6} \cup . . .</tex>
Вероятности этих объединений равны суммам вероятностей слагаемых:
<tex > P(A) =</tex><tex dpi = "160"> P(A) = \frac{1}{6} + \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{2} + \frac{1}{6}\cdot \left(\frac{5}{6}\right)^{4} ... = \frac{6}{11}.</tex> Теперь аналогичным образом посчитаю вероятность для события В
<tex> P(B) =<tex> <tex dpi="160">P(B) = \frac{1}{6} \cdot\frac{5}{6}+ \frac{1}{6} \cdot\left(\frac{5}{6}\right)^{3} + \frac{1}{6}\cdot \left(\frac{5}{6}\right)^{5} ... = \frac{5}{11}.
</tex>