Изменения
→Теорема
##<tex> G</tex> нечетный цикл
Поэтому мы будем считать до конца доказательства, что <tex> \Delta(G) \ge 3</tex>.
Если в <tex>G</tex> существует вершина <tex>v</tex> степени <tex> deg\ v < \Delta(G)</tex>, то по выше доказанной лемме <tex> \chi(G) \le \Delta(G)</tex>. То есть осталось рассмотреть случай, когда <tex>G</tex> {{---}} планарный регулярный граф степени <tex>\Delta</tex>.
#Если <tex>G</tex> не является двусвязным графом, тогда в графе <tex> G</tex> <tex> \exists</tex> <tex> v \in V</tex>, где v {{---}} точка сочленения. Пусть <tex>G_1,G_2</tex> две компоненты связности полученный при удалении вершины <tex>v</tex>.Тогда, по выше доказанной лемме <tex>G_1,G_2</tex> можно правильно раскрасить в неболее чем <tex>\Delta</tex> цветов.Поскольку количество соседей вершины <tex> v </tex> в каждой из компонент не более <tex> \Delta - 1</tex>, то <tex>G</tex> можно правильно раскрасить в неболее чем <tex>\Delta</tex> цветов.