Язык <tex>L</tex> {{---}} регулярный <tex>\Leftrightarrow</tex> множество <tex>\{C_L^R(y) \mid y \in \sum^*\}</tex> его правых контекстов конечно
|proof=
<tex>\Rightarrow</tex>:Пусть <tex>L</tex> {{---}} регулярный. Тогда существует автомат <tex>A</tex>, распознающий его. Рассмотрим произвольное слово <tex>y</tex>. Пусть <tex>u</tex> {{---}} состояние <tex>A</tex>, в которое можно перейти из начального по слову <tex>y</tex>. Тогда <tex>C_L^R(y)</tex> совпадает с множеством слов, по которых из состояния <tex>u</tex> можно попасть в допускающее. Причем если по какому-то слову <tex>z</tex> тоже можно перейти из начального состояния в <tex>u</tex>, то <tex>C_L^R(y) = C_L^R(z)</tex>.Наоборот, если <tex>C_L^R(y) = C_L^R(z)</tex>, то состояния, в которые можно перейти по словам <tex>y</tex>\Leftarrowи <tex>z</tex>:Мёд? Да, эквивалентны. Таким образом, можно установить соответствие между правыми контекстами и классами эквивалентности вершин автомата, которых конечное число.
}}