Изменения

Перейти к: навигация, поиск

Композиция отношений

2815 байт добавлено, 19:28, 4 сентября 2022
м
rollbackEdits.php mass rollback
= {{Определение |definition='''Композицией ''' (произведением, суперпозицией) бинарных отношений (англ. ''composition of binary relations'') <mathtex>R\subseteq A\times B</mathtex> и <mathtex>S\subseteq B\times C</mathtex> называется такое отношение <mathtex> (R \circ S ) \subseteq A\times C</mathtex>, что:
<mathtex>\forall a\in A, c\in C : a(R\circ S)c \Leftrightarrow iff \exists b\in B\mid : (aRba R b)\and wedge (bScb S c)</mathtex>.}}Примером такого отношения может служить отношение на некотором множестве <tex>A</tex> населенных пунктов <tex>R\subseteq A\times A</tex> {{---}} отношение "можно доехать на поезде", а <tex>S\subseteq A\times A</tex> {{---}} отношение "можно доехать на автобусе". Тогда отношение <tex>R\circ S\subseteq A\times A</tex> {{---}} отношение "можно добраться из пункта А в пункт Б, сначала проехав на поезде, а потом на автобусе (только по одному разу)".
Примером такого отношения может служить отношение на некотором множестве <math>A</math> населенных пунктов <math>R\subseteq A\times A</math> - отношение "можно доехать на поезде", а <math>S\subseteq A\times A</math> - отношение "можно доехать на автобусе". Тогда отношение <math>R\circ S\subseteq A\times A</math> - отношение "можно добраться из А в Б, сначала проехав на поезде, а потом на автобусе(только по одному разу)".== Степень отношений ==
{{Определение|definition='''Степень отношений=отношения''' (англ. ''power of relation'') <tex>R^{n} \subseteq A\times A</tex>, определяется следующим образом:
Степень отношения * <mathtex>R^{n} = R^{n-1} \subseteq A\times Acirc R; </mathtex>, определяется следующим образом:
* <mathtex> R^{n1} = R^{n-1} \circ R; </mathtex>
* <mathtex> R^1 {0} = R\{ (x, x) \mid x \in A \}</tex>;}}
В связи с этим понятием, также вводятся обозначения: <tex> R^0 {+} = \bigcup\limits^{\infty}_{i=1} R^{ i} </tex> — [[Транзитивное замыкание]] (x, xангл. ''transitive closure'') отношения <tex>R</tex>;  <tex> R^{*} = \mid xbigcup\in Alimits^{\infty}_{i=0} R^{i} </tex> — Транзитивно-рефлексивное замыкание отношения <tex>R</mathtex>
В связи с этим понятием== Обратное отношение == {{Определение|definition=Отношение <tex>R^{-1} \subseteq B\times A</tex> называют '''обратным''' (англ. ''inverse relation'') для отношения <tex> R \subseteq A\times B</tex>, также вводятся обозначенияесли<tex> bR^{-1}a \iff aRb </tex>}} {{Определение|definition='''Ядром отношения''' (англ. ''kernel of relation'') <tex>R</tex> называется отношение <tex> R\circ R^{-1} </tex>}} == Свойства ==Композиция отношений обладает следующими свойствами: * Ядро отношения <tex> R </tex> [[Симметричное отношение|симметрично]]: &nbsp; <tex>a (R \circ R^{-1}) b \iff b (R \circ R^{-1})a </tex> * Композиция отношений [[Ассоциативная операция|ассоциативна]]: &nbsp; <tex> (R \circ S) \circ T = R \circ (S \circ T) </tex>
* Обратное отношение для отношения, являющемуся обратным к <mathtex> R </tex> есть само <tex> R :</tex> &nbsp; <tex> (R^{+-1} = \cup)^{\infty-1}_{i=1} R^{i}; </mathtex>
* Обратное отношение к композиции отношений <tex>R </tex> и <tex>S </tex> есть композиция отношений, обратных к <tex>R </tex> и <mathtex> S : </tex> &nbsp; <tex> (R\circ S) ^{*-1} = \cup(S ^{-1}) \infty}_{i=0} circ (R^{i-1} ) </mathtex> - [[Транзитивное замыкание]] множества R
=* Обратное отношениек объединению отношений <tex>R </tex> и <tex>S </tex> есть объединение отношений, обратных к <tex>R </tex> и <tex>S : </tex> &nbsp;<tex> (R \cup S) ^ {-1} =(R^{-1}) \cup (S^{-1}) </tex>
Отношение * Обратное отношение к пересечению отношений <mathtex>R^{-1} \subseteq B\times A</mathtex> и <tex>S </tex> есть пересечение отношений, обратных к <tex>R </tex> и <tex>S : </tex> называют ''обратным'' для отношения &nbsp;<mathtex> (R \subseteq Acap S) ^ {-1} = (R^{-1}) \times Bcap (S^{-1}) </mathtex>, если:
<math> aR^{-1}b \Leftrightarrow bRa </math>== См. также ==* [[Бинарное_отношение|Бинарное отношение]]* [[Транзитивное_замыкание|Транзитивное замыкание]]
Ядром отношения R называется отношение <math> R\circ R^==Источники информации==* Новиков Ф. А. {{---1} <} Дискретная математика для программистов: Учебник для вузов. 3-е изд. {{---}} СПБ.: Питер, 2009 {{---}} 52 с.* [http:/math>/en.wikipedia.org/wiki/Composition_of_relations Wikipedia {{---}} Composition of relations]* [http://math2.uncc.edu/~hbreiter/m1165/Lecture10.pdf UNC Charlotte {{---}} Lectures in Discrete Mathematics: Composition of Relations and Directed Graphs.]
Оно симметрично[[Категория: <math> a(R\circ R^{-1})b \Rightarrow \exists cДискретная математика и алгоритмы]][[Категория: (aRc)\and(cR^{-1}b) \Rightarrow \exists c:(bRc)\and (cR^{-1}a) \Rightarrow b(R\circ R^{-1}) a</math>Отношения ]]
1632
правки

Навигация