277
правок
Изменения
→Теорема о непрерывно дифференцируемых отображениях
=== Теорема о непрерывно дифференцируемых отображениях ===
{{Теорема
|statement=
<tex> F : E </tex> — откр. <tex> \subset \mathbb{R}^m \rightarrow \mathbb{R}^n </tex> — дифф. <tex> E </tex>.
Тогда эквивалентны: <tex>I) F \in C^{-1}(E) \\ II) F' : E \rightarrow \alpha_{m, n} </tex> — непрерывна.
|proof=
<tex> I \Rightarrow II </tex>
<tex> ||A|| \le \sqrt{\sum a_i^2}; A = (a_{ij}); </tex>
? <tex> F' </tex> непр. в <tex> (\cdot) \overline{X} </tex>
<tex> \forall \epsilon > 0 \exists \delta > 0 : \forall x : |x - \overline{x}| < \delta </tex>
<tex> ||F'(x) - F(\overline{x})|| < \epsilon </tex>
<tex> ||F'(x) - F'(\overline{x})|| \le \sqrt{\sum(\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x}))^2} </tex>
<tex> \forall \epsilon > 0 </tex> выберем <tex> \delta : |\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x})| < \frac{\epsilon}{\sqrt{min}}</tex>; при <tex> |x - \overline{x}| < \delta; i = 1 \ldots n; j = 1 \ldots m </tex>
<tex> II \Rightarrow I </tex>
<tex> F' </tex> — непрерывна. <tex> e_1 \ldots e_m </tex>
<tex> F'(x)e_i = </tex><tex> \begin{pmatrix} \frac{\partial f_i}{\partial x_1}(x) \\ \ldots \\ \frac{\partial f_i}{\partial x_n}(x) \end{pmatrix}; </tex><tex> \begin{matrix} |F'(x)e_i| \le ||F'(x)|| \cdot 1 \\ |\frac{\partial f_i}{\partial x_j}(x)| \le |F'(x)e_i| \le ||F'(x)|| \end{matrix} </tex>
Точно также: <tex> |\frac{\partial f_i}{\partial x_j}(x) - \frac{\partial f_i}{\partial x_j}(\overline{x})| \le ||F'(x) - F'(\overline{x})|| </tex>
}}
=== Необходимое условие экстремума. Теорема Ролля ===
{{Теорема