Изменения

Перейти к: навигация, поиск

Участник:Yulya3102/Матан3сем

901 байт добавлено, 22:11, 12 января 2013
Лемма о дифференцировании интеграла по параметру
|statement=
Пусть <tex> f: [a; b] \times [c; d] \to \mathbb{R}, \ f(x, y) </tex> — непрерывна, дифференцируема по <tex> y </tex> при любых <tex> x </tex> и <tex> f'_y </tex> непрерывна на промежутке. Пусть <tex> \Phi(y) = \int\limits_a^b f(x, y) dx, \ y \in [c, d] </tex>. Тогда <tex> \Phi(y) </tex> дифференцируема и <tex> \Phi'(y) = \int\limits_a^b f'_y(x, y) dx </tex>.
|proof=
<tex> \frac{\Phi(y + h) - \Phi(y)}{h} = \int_a^b \frac{f(x, y + h) - f(x, y)}{h} dx = \int_a^b f'_y (x, y + \Theta h) dx; \ \Theta \in [0, 1] </tex> зависит от <tex> x, y </tex>
 
<tex> f'_y </tex> — непр. на <tex> [a, b] \times [c, d] </tex>
 
<tex> \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y : |x - y| < \delta; \ |f_y(x) - f_y(y)| < \epsilon </tex> — равномерная сходимость
 
<tex> | \frac{\Phi(y + h) - \Phi(y)}{h} - \int_a^b f'_y(x, y)dx | \le | \int_a^b f'_y(x, y + \Theta h) - f'_y(x, y)dx | \le </tex>
 
<tex> \le \int_a^b | f'_y(x, y + \Theta h) - f'_y(x, y) |dx \le^* \int_a^b \epsilon dx = \epsilon(b - a) </tex>
 
<tex> \le^* : \forall \epsilon > 0 \ \exists \delta > 0 \ \forall h : |h| < \delta </tex>
 
<tex> | \frac{\Phi(y + h) - \Phi(y)}{h} - \int_a^b f'_y | < \epsilon (b - a) </tex> — определение предела.
}}
277
правок

Навигация