Изменения

Перейти к: навигация, поиск

Отношение рёберной двусвязности

730 байт добавлено, 21:39, 1 октября 2010
Нет описания правки
'''Транзитивность:''' <math>(u, v)\in R </math> и <math>(v, w)\in R \Rightarrow (u, w)\in R. </math>
''Доказательство:'' Пусть <math>P_1,P_2 = u \rightsquigarrow v</math> и <math>Q_1,Q_2 = v \rightsquigarrow w</math> - реберно непересекащиеся пути.
Выберем вершины <math>x_1</math> и <math>x_2</math> так, что <math>P_1 \and Q_1 = (v \rightsquigarrow x1),</math> <math>P_2 \and Q_2 = (v \rightsquigarrow x2)</math> и <math>(v \rightsquigarrow x1) \and (v \rightsquigarrow x2) = v.</math>
Получим два реберно непересекающихся пути <math>R_1 = (u \rightsquigarrow x1) \or (x1 \rightsquigarrow w) </math> и <math>R_2 = (u \rightsquigarrow x2) \or (x2 \rightsquigarrow w). </math>
Действительно, если <math>R_1 \and R_2 =</math> {какой-то путь}, то тогда вершины <math>u</math> и <math> w</math> не связаны отношением реберной двусвязности.
}}
205
правок

Навигация