205
правок
Изменения
Нет описания правки
''Доказательство:'' Пусть <math>P_1,P_2 = u \rightsquigarrow v</math> и <math>Q_1,Q_2 = v \rightsquigarrow w</math> - реберно непересекащиеся пути.
Выберем вершины <math>x_1</math> и <math>x_2</math> так, что <math>P_1 \and Q_1 = (v \rightsquigarrow x1),</math> <math>P_2 \and Q_2 = (v \rightsquigarrow x2)</math> и <math>(v \rightsquigarrow x1) \and (v \rightsquigarrow x2) = v.</math>
Получим два реберно непересекающихся пути <math>R_1 = (u \rightsquigarrow x1) \or (x1 \rightsquigarrow w) </math> и <math>R_2 = (u \rightsquigarrow x2) \or (x2 \rightsquigarrow w). </math>
Действительно, если <math>R_1 (u \rightsquigarrow x1) \and (u \rightsquigarrow x2) = u</math>(реберная двусвязность <math>u</math> и <math>v</math>). <math> (x1 \rightsquigarrow w) \and R_2 (x2 \rightsquigarrow w) = w</math>(реберная двусвязность <math>v</math> и <math>w</math>)Если <math>(u \rightsquigarrow x1) \and (x2 \rightsquigarrow w)= </math> {какой-то путь} или <math>(u \rightsquigarrow x2) \and (x1 \rightsquigarrow w)=</math> {какой-то путь}, то тогда вершины <math>uv</math> и <math> w</math> не связаны отношением реберной двусвязности.
}}