Изменения

Перейти к: навигация, поиск

Теория Гильберта-Шмидта

6331 байт добавлено, 22:20, 3 июня 2013
дописал
{{TODO|t=
Как обычно, это переписанный с выключенным мозгом конспект. Автор не несёт(пока) ответственности за то, что в статье написан антинаучный бред. Хуже того, чукча не читатель, чукча писатель, и написанное даже не читалось.
В параграфе для операторов используется курсивный шрифт (<tex>\mathcal{A}</tex>, <tex>\mathcal{B}</tex>), а для матриц {{---}} прямой (<tex>A</tex>, <tex>B</tex>). Во-первых, для того, чтобы различать их, а во-вторых, для красоты. Грустно, что тебе, читатель этого, срать на то, написано ли <tex>\mathcal{I}</tex> или <tex>I</tex>, а хочется только сдать экзамен.
}}
}}
{{Утверждение
|statement=Если <tex>\mathcal{A}</tex>{{---}} самосопряжённый оператор, то <tex>r_\rho)\mathcal{A}) = \|\mathcal{A}\|</tex>
|proof=Ранее мы доказывали, что <tex>r_\rho(\mathcal{A}) = \lim\limits_{n\to\infty} \sqrt[n]{\|\mathcal{A}^n\|}</tex>
 
Если проверить, что <tex>\|\mathcal{A}^{2^n}\| = \|\mathcal{A}\|^{2^n}</tex>, то, по предыдущему утверждению, теорема будет верна: <tex>\sqrt[2^n]{\|\mathcal{A}^{2^n}\|} = \sqrt[2^n]{\|\mathcal{A}\|^{2^n}} = \|\mathcal{A}\|</tex>
 
Очевидно, достаточно проверить это утверждение только для <tex>n = 1</tex>. Остальное получится автоматически.
 
<tex>\langle\mathcal{A}x, \mathcal{A}x = \|\mathcal{A}x\|^2</tex>
 
По самосопряжённости:
 
<tex> = \langle x, \mathcal{A}^2x \rangle \le</tex> [по неравенству Шварца] <tex>\le \|\mathcal{A}^2x\|\cdot\|x\| \le</tex> [<tex>\|x\| \le 1</tex>] <tex>\le \|\mathcal{A}^2x\| \le</tex> <tex>\|\mathcal{A}^2\| \cdot \|x\| \le </tex> <tex>\|\mathcal{A}^2\|</tex>
 
Итого: <tex>\|\mathcal{A}\|^2 \le \|\mathcal{A}^2\|</tex>. Осталось доказать обратное неравенство.
 
<tex>\|\mathcal{A}^2 x \| = </tex> <tex>\|\mathcal{A}(\mathcal{A}x)\| \le</tex> <tex>\|\mathcal{A}\| \cdot \|\mathcal{A}x\| \le</tex> <tex>\|\mathcal{A}\|^2</tex>
}}
 
Если <tex>\mathcal{A}</tex>{{---}} компактный, то <tex>\sigma(\mathcal{A})</tex> состоит только из счётного числа собственных чисел <tex>\lambda_i</tex>. Обозначим за <tex>M_{\lambda_i} </tex> собственные подпространства. В силу самосопряжённости, <tex>M_{\lambda_i} \perp M_{\lambda_j}</tex>.
 
Собственные подпространства конечномерны (<tex>\dim M_\lambda < +\infty</tex>). Можно считать, что в каждом из них определён ортонормированный базис.
 
{{Теорема
|author=Гильберт, Шмидт
|statement=Если <tex>\mathcal{A}</tex>{{---}} самосопряжённый оператор в гильбертовом пространстве <tex>\mathcal{H}</tex>, а <tex>M_{\lambda_i}</tex>{{---}} его (оператора) собственные подпространства, то <tex>\mathcal{H} = M_{\lambda_1} \oplus M_{\lambda_2} \oplus \cdots \oplus M_{\lambda_n} \oplus \cdots </tex>
|proof=Обозначим за <tex>M = \bigoplus\limits_n M_{\lambda_n}</tex>, <tex>M^\bot</tex>{{---}} ортогональное дополнение <tex>M</tex> до <tex>\mathcal{H}</tex> (<tex>\mathcal{H} = M \oplus M^\bot</tex>).
 
Нужно проверить, что <tex>M^\bot = \{0\}</tex>
 
Элементарно проверяется, что <tex>\forall M_\lambda : \mathcal{A}(M_\lambda) \subset M_\lambda</tex>:
<tex>\forall x \in M_\lambda : \mathcal{A}x = \lambda x \in M_\lambda</tex>
 
Проверим, что <tex>\mathcal{A}(M^\bot) \subset M^\bot</tex>: <tex>\forall x \in M^\bot : \mathcal{A}x \perp</tex> любому <tex>M_\lambda</tex> <tex>\Rightarrow</tex> <tex>\mathcal{A}x \in M^\bot</tex>
 
<tex>y \in M_\lambda : \langle \mathcal{A}x, y\rangle = \langle x, \mathcal{A}y\rangle = \langle x, \lambda y \rangle = |\lambda|\langle x, y \rangle</tex>, <tex>x\in M^\bot</tex>, <tex>\langle x, y \rangle = 0</tex>
 
Значит, <tex>\mathcal{A}(M^\bot)\subset M^\bot</tex>
 
Рассмотрим <tex>\mathcal{A}_0 = \mathcal{A}|_{M^\bot}</tex>
 
<tex>M^\bot</tex> {{---}} гильбертово пространство, <tex>\mathcal{A}_0</tex> {{---}} самосопряжённое, <tex>r_\sigma(\mathcal{A}_0) = \|\mathcal{A}_0\|</tex>
 
Но все собственные числа <tex>\mathcal{A}</tex> задействованы в <tex>M_\lambda</tex> <tex>r_\sigma(\mathcal{A}_0) = 0</tex> <tex>\Rightarrow</tex> <tex>\|\mathcal{A}_0\| = 0</tex> <tex>\Rightarrow</tex> оператор тривиальный <tex>M^\bot = \operatorname{Ker} \mathcal{A}_0</tex>
 
Если бы у <tex>\mathcal{A}</tex> было нетривиальное ядро, то оно стало бы собственным подпространосвом, значит, было бы задействовано в <tex>\bigoplus</tex>. Значит, <tex>\operatorname{Ker} \mathcal{A}_0 = \{0\}</tex>
}}
 
Если <tex>\mathcal{A}</tex>{{---}} самосопряжённый компактный оператор, то ОНС базис <tex>\mathcal{H}</tex> можно построить из собственных векторов, соответствующим собственным числам <tex>\varphi_1, \varphi_2, \ldots</tex>. Любой <tex>x \in \mathcal{H}</tex> можно разложить в ряд Фурье по свойствам гильбертова пространства. Значит,
 
<tex>\mathcal{A}x = \sum\limits_{n=1}^\infty \langle x, \varphi_n\rangle \mathcal{A}\varphi_n = \sum\limits_{n=1}^\infty \lambda_n \langle x, \varphi_n\rangle \varphi_n</tex>
 
Получаем структуру сопряжённого компактного оператора: <tex>\lambda \in \rho(\mathcal{A})</tex> (<tex>\lambda\mathcal{I}-\mathcal{A}</tex> непрерывно обратим) <tex>\Rightarrow</tex> <tex>y = \sum\limits_{n=1}^\infty \langle y, \varphi_n\rangle \varphi_n</tex>, <tex>y = \lambda x - \mathcal{A}x</tex>
 
<tex>\sum\limits_{n=1}^\infty \langle y, \varphi_n\rangle \varphi_n = \sum \lambda\langle x, \varphi_n\rangle\varphi_n - \sum\lambda_n\langle x, \varphi_n\rangle\varphi_n = \sum(\lambda-\lambda_n)\langle x, \varphi_n\rangle \varphi_n</tex>
 
Можно приравнять коэффициенты: <tex>\langle y, \varphi_n\rangle = (\lambda-\lambda_n)\langle x, \varphi_n\rangle</tex>
 
<tex>\langle x, \varphi_n\rangle = \frac{\langle y, \varphi_n\rangle}{\lambda-\lambda_n}</tex> (нуля быть не может, потому что <tex>y \in \rho(\mathcal{A})</tex>)
<stex>R_\lambda(y) = \sum\limits_{n=1}^\infty \frac{TODO|t=на время отпускаю блокировку на статью\langle y, \varphi_n\rangle}{\lambda-\lambda_n}\varphi_n</stex>{{TODO|t=lock}}
403
правки

Навигация