3622
правки
Изменения
Нет описания правки
'''Случай 2''': <tex> k \not\in S(i) </tex>
Пусть <tex> h </tex> будет последней работой в расписании между <tex> i </tex> и <tex> j </tex> <tex> ( </tex> включая работу <tex> i) </tex>, которая принадлежит <tex> S(i) </tex>, то есть для всех работ <tex> r </tex> в множестве <tex> K </tex>, назначенных между <tex> h </tex> и <tex> j </tex>, имеем, что <tex> r \not\in S(i) </tex>. Так как наш [[Основные определения теории графов | граф]] зависимостей работ является исходящим деревом и <tex>(i, j) \in edges </tex>, то любой предок работы <tex> j </tex> также является и предком работы <tex> i </tex>. Поэтому никакая работа из <tex> K </tex> не является предком <tex> j </tex> <tex>(</tex>иначе бы она не смогла стоять после <tex> i) </tex> или потомком, значит, <tex> K \sim j </tex>. Из этого следует, что <tex> q(K) \geqslant q(j) </tex>.
Работа <tex> h \in S(i) </tex> не является потомком какой-либо работы <tex> r \in K </tex>. В противном же случае получалось, что <tex> r \in S(i) </tex>, значит, <tex> h </tex> является не последней работой из <tex> S(i) </tex> между <tex> i </tex> и <tex> j </tex>. Поэтому <tex> h \sim K </tex>, откуда тут же следует, что <tex> q(h) \geqslant q(K) \geqslant q(j) </tex>. По определению <tex> j </tex> имеем, что <tex> q(j) \geqslant q(h) </tex>, следовательно <tex> q(j) = q(h) = q(K) </tex>. По [[#lemma1 | лемме]] мы можем поменять блоки <tex> K </tex> и <tex> j </tex> не нарушив оптимальности расписания.
Таким образом мы можем менять соседние работы или блоки работ, пока <tex> j </tex> не окажется сразу за <tex> i </tex>.
}}
Если для получения работы <tex> j </tex> с минимальным значением <tex> q(j) </tex> использовать очередь с приоритетами, а для поиска родителям вершины использовать систему непересекающихся множеств, то время работы алгоритма будет <tex> O(n\log{n}) </tex>.
//TODO: картинка с примером
== Доказательство оптимальности алгоритма ==
{{Теорема
|statement = Алгоритм <tex> 1 \mid outtree \mid \sum w_i C_i</tex> строит оптимальное расписание.
|proof =
Доказательство проведём по индукции. Очевидно, что для одной вершины алгоритм построит оптимальное расписание. Пусть теперь он может составить оптимальную последовательность назначенных работ числом меньше <tex> n </tex>. Пусть также работы <tex> i, j </tex> {{---}} работы, которые объединяться объединятся на первом шаге алгоритма. Тогда оптимальное расписание <tex> R </tex> можно представить следующим образом:
<tex> \pi \colon \pi (1), ..., \pi (k), i, j, \pi (k + 3), ..., \pi (n) </tex>