Изменения

Перейти к: навигация, поиск

Сопряжённый оператор

4 байта убрано, 19:43, 10 июня 2013
Сопряженный оператор
<tex> Ax \in F </tex>, по следствию из теоремы Хана-Банаха подберем <tex> \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| </tex>.
<tex> \| A^*(\varphi_0, x) \| = | \varphi_0(Ax) | = \| Ax \| > \| A \| - \varepsilon </tex>.
<tex> \| A^*(\varphi_0, x) \| \le \| A^*(\varphi_0) \| \| x \| = \| A^*(\varphi_0) \| \le \| A^* \| \| \varphi_0 \| = \| A^* \| </tex>.
Соединяя эти два неравенства, получаем, что <tex> \forall \varepsilon > 0: \| A^* \| > \| A \| - \varepsilon </tex>.
Анонимный участник

Навигация