355
правок
Изменения
м
с С другой стороны, неравенство <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\|\ge|\nu|\cdot\|x\|</tex> даёт априорную оценку <tex>y=(\lambda\mathcal{I}-\mathcal{A})x</tex>, откуда следует, что <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} всюду плотно в <tex> \mathcal H </tex>замкнуто.
А также, <tex>R(\lambda\mathcal{I}-\mathcal{A})</tex> {{---}} замкнуто. Значит, <tex>\mathcal{H} = R(\lambda\mathcal{I}-\mathcal{A})</tex>
→Вещественность спектра
<tex>\lambda = \mu + i\nu</tex>, <tex>\nu\ne0</tex>, <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex>
<tex>\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) = \{0\}</tex>, <tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = \mathcal{H}</tex>(всюду плотно в <tex> \mathcal H </tex>).
<tex>\lambda\mathcal{I}-\mathcal{A}</tex>{{---}} биективен на <tex>\mathcal{H}</tex>. <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\|</tex> гарантирует, что обратный оператор ограничен, и, как следствие, непрерывен. Значит, <tex>\lambda \in \rho(\mathcal{A})</tex>