205
правок
Изменения
Нет описания правки
Действительно, <math> (u \rightsquigarrow x_1) \and (u \rightsquigarrow x_2) = u</math>(реберная двусвязность <math>u</math> и <math>v</math>). <math> (x_1 \rightsquigarrow w) \and (x_2 \rightsquigarrow w) = w</math>(реберная двусвязность <math>v</math> и <math>w</math>)
Если <math>(u \rightsquigarrow x_1) \and (x_2 \rightsquigarrow w)= </math> {какой-то путь} или <math>(u \rightsquigarrow x_2) \and (x_1 \rightsquigarrow w)= </math> {какой-то путь}, то тогда вершины <math>v</math> и <math> w</math> не связаны отношением реберной двусвязности.
}}
== Компоненты реберной двусвязности ==
{{Определение
|definition =
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.
}}
== См. также ==
[[Отношение вершинной двусвязности]]