Изменения

Перейти к: навигация, поиск
Нет описания правки
|proof=
Следует из теоремы о разложении <tex>Ker \; p(\mathcal{A})</tex> в прямую сумму <tex>Ker</tex> взаимнопростых делителей <tex>p(\mathcal{A})</tex> ([[Алгебра операторных полиномов]]), с учетом того, что <tex>Ker \; p_{\mathcal{A}}(\mathcal{A}) = X</tex> и <tex>Ker \; p_i(\mathcal{A})</tex> - инвариантное п.п.(так как сумма прямая ,то '''у'''.и.п.п.)
}}
 
{{Лемма
|id=
|author=
|about=
|statement=Пусть <tex>p_{\mathcal{A}}(\lambda) = \displaystyle \prod_{i = 1}^{k} p_i(\lambda)</tex>, <tex>p_i' = p_{\mathcal{A}}/ p_i</tex>, <tex>q_i</tex> - такие , что <tex>\displaystyle \sum_{i=1}^{k}p_i'(\lambda)q_i(\lambda) = 1 </tex>. Тогда <tex>\mathcal{P}_i = p_i(\mathcal{A})q_i(\mathcal{A})</tex> - ультрапроектор на <tex>L_i</tex>.
|proof=
 
}}
234
правки

Навигация