Изменения

Перейти к: навигация, поиск

Тензор

Нет изменений в размере, 20:19, 14 июня 2013
Транспонирование тензора
|statement=Пусть <tex>\omega_{i1,i2,...,ip}^{j1,j2,...,jq}</tex>- тензор ранга (q,p). Пусть каждому базису соответствует <tex>\varkappa _{i1,i2,...,ip}^{j1,j2,...,jq} = \omega_{i1,i2,...,ip}^{j2,j1,...,jq} = \omega_{i1,i2,...,ip}^{T\; \underline{j1},\underline{j2},...,jq}</tex>. Тогда <tex>\varkappa _{i1,i2,...,ip}^{j1,j2,...,jq}</tex> - тензор ранга (q,p)
|proof=
<tex>\tilde{\varkappa}_{i1,i2,...,ip}^{j1,j2,...,jq} = \omega_{i1,i2,...,ip}^{j2,j1,...,jq} = \sigma_{s_1}^{j_2}\sigma_{s_2}^{j_1} \ldots \sigma_{s_q}^{j_q} \tau_{i_1}^{t_1} \ldots \tau_{i_p}^{t_p} \omega_{t_1,t_2,...,t_p}^{s_1,s_2,...,s_q} = \tau_{i_1}^{t_1} \ldots \tau_{i_p}^{t_p} \sigma_{s_1}^{j_1}\sigma_{s_2}^{j_2} \ldots \sigma_{s_q}^{j_q} \underbrace{\omega_{t_1,t_2,...,t_p}^{s_2,s_1,s_2,...,s_q}}_{\varkappa_{t_1,t_2,...,t_p}^{s_1,s_2,s_1,...,s_q}}</tex>
}}
[[Категория: Алгебра и геометрия 1 курс]]
234
правки

Навигация