Изменения

Перейти к: навигация, поиск

Полином Жегалкина

4 байта убрано, 10:57, 13 ноября 2013
Преобразование Мёбиуса, знаки в двух местах были заменены на строгие
'''2)''' Пускай теорема справедлива для всех сумм <tex>wt(x) < k</tex>. Покажем, что в таком случае она верна и для <tex>wt(x) = k</tex>. По <tex> (2) </tex>, а далее по предположению индукции видим: <tex> f(x) = \bigoplus \limits_{i \preceq x} \alpha_i = \left [ \bigoplus \limits_{i \prec x} \bigoplus \limits_{j\preceq i} f(j) \right ] \oplus \alpha_x</tex> .
Рассмотрим сумму <tex> \left [ \bigoplus \limits_{i \prec x} \bigoplus \limits_{j\preceq i} f(j) \right ] </tex>. Каждый элемент <tex> f(j) </tex> содержится в ней, только если <tex> j \preceq prec x </tex>, и для фиксированных <tex> j, x </tex> элемент <tex> f(j)</tex> встречается ровно столько раз, сколько существует <tex> i </tex> , таких, что <tex> j \prec i \preceq prec x</tex>. Несложно увидеть, что таких <tex> i </tex> существует ровно <tex> 2^{wt(x)-wt(j)}-1 </tex>, то есть нечетное количество раз. Тогда <tex> \left [ \bigoplus \limits_{i \prec x} \bigoplus \limits_{j\preceq i} f(j) \right ] = \bigoplus \limits_{j\prec x} f(j) </tex>.
Но тогда <tex> f(x) = \left [ \bigoplus \limits_{j\prec x} f(j) \right ] \oplus \alpha_x \Leftrightarrow f(x) \oplus \bigoplus \limits_{j\prec x} f(j) = \alpha_x \Leftrightarrow \alpha_x = \bigoplus \limits_{j\preceq x} f(j)</tex>.
То есть при <tex>wt(x) = k</tex> формула также выполняется, значит при любых <tex> x </tex> выполняется <tex>\alpha_x = \bigoplus \limits_{j\preceq x} f(j)</tex>.
Анонимный участник

Навигация