175
правок
Изменения
→Китайская теорема об остатках
<tex> x-y \rightarrow (0 , 0 , \ldots , 0) \Leftrightarrow (x-y) \vdots m_i </tex>, значит <tex> x \equiv y(mod \text{ } \prod n_i )</tex>. То есть разных наборов всего n. <br>
Конструктивное доказательство: <br>
Необходимо вычислить элемент <tex> a </tex> по заданным <tex> (a_1 , a_2 , \ldots , a_k) </tex>. Сначала определим величины <tex> m_i = \frac{n}{n_i}</tex>. Другими словами, <tex> m_i</tex> {{---}} произведение всех значений <tex> n_j</tex>, отличных от <tex> n_i</tex>. Затем определим <tex> c_i = m_i({m_i}^{-1} mod \text{ }n_i) </tex>.
}}