Изменения
→Существование и единственность
# Стягивание ребра <tex> e </tex> в любом случае не меняет числа компонент связности, поэтому <tex> \rho ^{*}(A') = \rho ^{*}_{1} (A) </tex>. Если <tex> e </tex> не петля, то стягивание также не меняет числа лишних рёбер, откуда <tex> \overline{\rho} (A') = \overline {\rho _{1}} (A) </tex>.
# Если <tex> e </tex> не мост, то удаление ребра <tex> e </tex> не меняет числа компонент связности, откуда <tex> \rho (A) = \rho _2(A)</tex> и <tex> \rho (E) = \rho _2 (E \backslash {e}) </tex>. Подставляя эти равенства в формулы для <tex> \rho ^{*} </tex> и <tex> \overline {\rho} </tex>, получаем <tex> \rho ^{*}(A') = \rho ^{*}_{2} (A) </tex> и <tex> \overline{\rho} (A') = \overline {\rho _{2}} (A) </tex>, что и требовалось.
# Если <tex> e </tex> мост, то в графе<tex> G(A') </tex> на одну компоненту связности меньше, чем в <tex> G(A) </tex>, откуда <tex> \rho ^{*}(A') = \rho ^{*} (A) - 1 </tex>. При этом ребро <tex> e </tex> не будет лишним <tex> A' </tex>, поэтому <tex> \overline{\rho} (A') = \overline {\rho} (A) </tex>.# Если <tex> e </tex> петля, то её исключение не меняет числа компонент связности, поэтому <tex> \rho ^{*}(A') = \rho ^{*} (A) </tex>. По той же причине <tex> e </tex> является лишним, откуда <tex> \overline{\rho} (A') = 1 + \overline {\rho} (A) </tex>.
}}