Изменения

Перейти к: навигация, поиск
м
Теорема Татта
{{Теорема
|statement=В графе <tex>\mathbb{G}</tex> существует полное паросочетание <tex>\Leftrightarrow</tex> <tex>\forall S \subset \mathbb{V_\mathbb{G}V}</tex> выполнено условие: <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>
|proof =
<tex>\Rightarrow</tex> Рассмотрим <tex>M</tex> {{---}} полное паросочетание в графе <tex>\mathbb{G}</tex> и множество вершин <tex>S \subset \mathbb{V_\mathbb{G}V}</tex>.
Одна из вершин каждой нечетной компоненты связности графа <tex> \mathbb{G} \setminus S</tex> соединена ребром паросочетания <tex>M</tex> с какой-то вершиной из <tex>S</tex>. Иначе мы не сможем покрыть паросочетанием все вершины этой компоненты связности и получим противоречие с тем, что полное паросочетание существует по условию теоремы. Таким образом, получаем, что <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>.
<tex>\Leftarrow</tex> Пусть для графа <tex>\mathbb{G}</tex> выполнено, что <tex>o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>, но полного паросочетания в этом графе не существует.
Рассмотрим граф <tex>\mathbb{G'}</tex> и множество вершин <tex>U</tex> (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то <tex>\forall S \subset \mathbb{V_\mathbb{G}V}</tex> выполнено <tex>o(\mathbb{G'} \setminus S) \leqslant o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>. По лемме, доказанной выше: <tex>\mathbb{G'} \setminus U</tex> {{---}} объединение несвязных полных графов.
Очевидно, что в каждой четной компоненте связности графа <tex>\mathbb{G'} \setminus U</tex> мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества <tex>U</tex>. При этом мы будем использовать различные вершины из <tex>U</tex>, это возможно, так как <tex>o(G' \setminus U) \leqslant \left\vert U \right\vert</tex>. Если все вершины множества <tex>U</tex> оказались покрытыми, то мы получили полное паросочетание в графе <tex>\mathbb{G'}</tex>. Противоречие, так как по построению в <tex>\mathbb{G'}</tex> нет полного паросочетания.
137
правок

Навигация