137
правок
Изменения
м
→Теорема Татта
Рассмотрим граф <tex>\mathbb{G'}</tex> и множество вершин <tex>U</tex> (из леммы). Так как число нечетных компонент не увеличивается при добавлении новых ребер, то <tex>\forall S \subset \mathbb{V}</tex> выполнено <tex>o(\mathbb{G'} \setminus S) \leqslant o(\mathbb{G} \setminus S) \leqslant \left\vert S \right\vert</tex>. По лемме, доказанной выше: <tex>\mathbb{G'} \setminus U</tex> {{---}} объединение несвязных полных графов.
Очевидно, что в каждой четной компоненте связности графа <tex>\mathbb{G'} \setminus U</tex> мы можем построить полное паросочетание. В каждой нечетной компоненте этого графа построим паросочетание, которое покрывает все вершины кроме одной, оставшуюся непокрытой вершину, соединим с какой-то вершиной множества <tex>U</tex>. При этом мы будем использовать различные вершины из <tex>U</tex>, это возможно, так как <tex>o(\mathbb{G' } \setminus U) \leqslant \left\vert U \right\vert</tex>. Если все вершины множества <tex>U</tex> оказались покрытыми, то мы получили полное паросочетание в графе <tex>\mathbb{G'}</tex>. Противоречие, так как по построению в <tex>\mathbb{G'}</tex> нет полного паросочетания.
Значит, в <tex>U</tex> осталось какое-то количество непокрытых вершин, при этом их четное число, потому что число вершин в <tex>\mathbb{G'}</tex> четно, так как <tex>o(\mathbb{G'} \setminus \varnothing) \leqslant \left\vert \varnothing \right\vert = 0</tex> и уже покрыто паросочетанием четное число вершин. Так как в множество <tex>U</tex> входят вершины, которые в <tex>\mathbb{G'}</tex> смежны со всеми остальными, то мы сможем разбить оставшиеся вершины на пары и покрыть их паросочетанием.