40
правок
Изменения
→Алгоритм Хаффмана за O(n) .
У нас есть массив частот (массив, в котором хранится число вхождений каждого символа в строку), отсортированный по возрастанию, нужно построить по нему код Хаффмана за <tex> O(n) </tex> (если массив не отсортирован, то это можно сделать, например,[[Цифровая_сортировка | цифровой сортировкой]] за <tex> O(n) </tex>, что не ухудшит асимптотику).
Идея алгоритма заключается в том, чтобы создать такую [[Дискретная_математика,_алгоритмы_и_структуры_данных#.D0.9F.D1.80.D0.B8.D0.BE.D1.80.D0.B8.D1.82.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D0.BE.D1.87.D0.B5.D1.80.D0.B5.D0.B4.D0.B8 | очередь с приоритетами]], из которой можно было бы доставать два минимума за <tex> O(1) </tex>, после чего в эту же очередь с приоритетами положить их сумму за <tex> O(1) </tex>. У нас уже есть массив с отсортированными частотами, теперь давайте заведем второй массив, в котором мы будем хранить суммы. Несложно заметить, что в этом массиве элементы тоже будут идти по неубыванию. Допустим, что на каком-то шаге сумма получилась меньше чем предыдущая, но это противоречит тому, что на каждом шаге мы выбираем два минимальных (т.е. на каждом последующем шаге мы выбираем два минимума из элементов больших, чем на предыдущем шаге).
На каждой итерации мы будет выбирать два минимума из четырех элементов (первые 2 элемента первого массива и первые 2 элемента второго массива). Теперь рассмотрим одну итерацию подробнее.